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ARGEMmy: an intermediate DSGE model calibrated/estimated for Ar-
gentina: two policy rules are often better than one2

1. Introduction
The purpose of this paper is to advance in the construction and calibration/estimation
of an intermediate DSGE model with two policy rules for Argentina and explore
to what extent two policy rules can be better than one. The BCRA�s research
department currently uses a very small and non-micro founded model with two
policy rules which I designed a few years ago (MEP: Modelo Económico Pequeño
(see Elosegui, Escudé, Garegnani and Sotes Paladino 2007)) as the backbone for
a system of macro and monetary projections. During 2006-07 I constructed the
much larger DSGE model ARGEM, mainly for research purposes. It seemed that
there was need for an intermediate sized DSGE model that could be of help in
bridging the gap between the two. ARGEMmy is the result of this new e¤ort.3

Hopefully, it will help in bringing the DSGE modeling strategy closer to the policy
environment.
The new model has much of the fundamental structure of ARGEM: it includes

banks as well as the ability to model a managed exchange rate regime by means
of two simultaneous policy rules (which may be feedback rules or not): the usual
policy rule for achieving an operational target for the nominal interest rate and an
additional policy rule that re�ects the Central Bank�s intervention in the foreign
exchange market. It also has some features that may be seen as an advance on
ARGEM. In particular, instead of a feedback rule on international reserves, as in
the current version of ARGEM, I now use a feedback rule on the rate of nominal
currency depreciation that includes a long run target for international reserves (as
a ratio to GDP). This seems closer to the way Central Banks that systematically
intervene in the foreign exchange market actually interpret their intervention, car-
ing for the level of the exchange rate in the short to medium run and the level of
foreign exchange reserves in a longer run.

2This paper was presented to the conference on �Quantitative Approaches to Monetary Policy
in Open Economies�, Federal Reserve Bank of Atlanta, May 15�16, 2009. I gratefully acknowl-
edge thoughtful comments and suggestions from my discussant, Alejandro Justiniano. Versions
without the section on optimal policy were also presented to the �Central Bank Workshop on
Macroeconomic Modelling�, Cartagena de Indias, Colombia, October 9-10, 2008, and the XIII
Meeting of the Researchers�Network of CEMLA, México, November 5-7, 2008. I am also grateful
for helpful comments from participants to these two conferences. The opinions expressed in this
paper are the author�s and do not necessarily re�ect those of the Central Bank of Argentina.

3The features of ARGEM that are suppressed in order to simplify the model are: 1) invest-
ment, and hence the capital stock and its intensity of utilization, implying that what is called
consumption in ARGEMmy should be interpreted as absorption (consumption plus investment),
2) the deposit rate, which is collapsed with the Central Bank bond rate under the assumption
that they are perfect substitutes, 3) bank reserves in the Central Bank and Bank demand for
foreign and domestic currency cash, 4) manufactured exports, which leaves only primary sec-
tor exports (commodities). As a consequence of 4) in (this version of) ARGEMmy there is no
Phillips equations for manufactured exports. Nevertheless, there is still abundant nominal rigid-
ity in ARGEMmy since it includes three Phillips equations (wages, domestic goods, and imported
goods), all with Calvo style stickiness plus full indexation to the previous period�s in�ation for
those who do not optimize currently. Also, imported goods prices are set in domestic (local) cur-
rency, generating a slow pass-through of both foreign prices and the exchange rate to domestic
import prices.
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Making speci�c assumptions on monetary and exchange rate policy in Argentina
is not easy. After two hyperin�ationary experiences Argentina �xed its exchange
rate to the U.S. dollar during the Convertibility period (April 1991-December 2001)
with the hope of putting and end to its long in�ationary history. However, since the
dollar �oated against other currencies (which represented 85% of Argentina�s trade)
and strongly appreciated against all currencies (from 1995 to 2001), so did the
peso, generating loss of competitiveness, high unemployment and the expectation
of a regime shift. After the demise of Convertibility and an interim period of
turbulence, the nominal exchange rate once again tended to be stable against the
dollar, albeit at around 3 pesos per dollar (instead of 1, as during Convertibility)
until recently. There are now no institutional restrictions on changing the nominal
exchange rate as there was during Convertibility, nor on in�uencing the domestic
interest rate through monetary policy. The Central Bank regularly intervenes both
in the money market and in the foreign exchange market, with higher frequency
in the second.4

Due to the diversity of exchange rate regimes Argentina has had in the last
few decades (and the fact that there is still the possibility of future changes in
the regime), I built the model so that it can handle di¤erent regimes. In par-
ticular, there are two policy rules (one for the interest rate and another for the
rate of nominal depreciation), which may or may not be feedback rules. When
they are both feedback rules, they both respond to deviations of the year on year
�consumption�in�ation rate from a target (that de�nes the nonstochastic steady
state in�ation) and deviations of GDP and the trade balance ratio (to GDP) from
their nonstochastic steady state (NSS) values. This re�ects a simultaneous con-
cern for in�ation, output, and current account stabilization. In ARGEM I used the
multilateral real exchange rate (MRER) instead of the trade balance ratio. But
they are quite interchangeable, since both are directly related to external balance
objectives. I found it convenient here to use the trade balance ratio because it
was easier to express its steady state value in terms of parameters that may be
estimated instead of imposing a steady state value that would introduce an unnec-
essary restriction in the estimation process. But it may also be more natural to
think in terms of an equilibrium long run trade balance ratio (that re�ects the net
foreign debt servicing in the steady state) in a policy rule or in a Central Bank loss
function. Nevertheless, the model can be formulated using either variable, both of
which are endogenous in the NSS.
In this paper I summarize preliminary results on the Bayesian estimation of a

subset of the parameters in ARGEMmy using data from the post-Convertibility
period. I found that a model with only a simple policy rule for the rate of nominal
currency depreciation yields a better �t than one with two simple policy rules.
Hence, I only report results from the latter. I use the estimated parameters to
address the main objective of this paper: to explore to what extent a monetary
and foreign exchange regime with two policy rules (i.e., a �Managed Exchange
Rate�(MER) regime) may be superior to the usual alternatives: a �Floating Ex-

4In an empirical paper, Garegnani and Escudé (2004) study the role of the U.S. MRER as
a fundamental for Argentina�s MRER. Escudé (2008) studies the simple nonlinear dynamics of
the Argentinian economy during both the Convertibility and post-Convertibility periods within
a deterministic model.
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change Rate� (FER) regime and a �Pegged Exchange Rate� (PER) regime. For
this I place ARGEMmy within a linear-quadratic optimal control framework un-
der commitment and perfect information, introducing an ad-hoc quadratic Central
Bank intertemporal loss function. I obtain the optimal policy rules and minimum
losses under di¤erent Central Bank preferences (or styles) and for the three alter-
native policy regimes. The preliminary results I show here indicate that two policy
rules are usually better than one. Indeed, in all the cases I actually computed, the
MRER regime generated a lower loss. Hence, having a model that can re�ect two
policy rules is not only of greater generality than conventional models but at least
for many Central Bank styles is the only way to represent a policy regime that gets
the Central Bank closer to its objectives.

Although the model is constructed for a developing country economy, I believe
that some of the central ideas are applicable to industrialized countries, even coun-
tries like the U.S. which even though it is the closest one can come to an example
of a closed economy is nevertheless open, making exchange rate developments very
important. In an empirical paper, S. Kim (2003) estimates a generalized structural
VAR to jointly analyze the e¤ects of foreign exchange intervention and interest rate
setting using data for the U.S. for the post Bretton-Woods period. He correctly
stresses the need for a uni�ed empirical model for the analysis of two policies that
obviously interact. His results show that there is plenty of such interaction and
he suggests the need to model foreign exchange policy explicitly when addressing
monetary policy and exchange rate developments. The idea behind the use of
two policy rules in my modeling goes precisely in this direction. If such a uni�ed
framework is needed for the U.S. economy, it is of course even more important in
considering developing economies in which foreign exchange market intervention is
routinely practiced on a day to day basis.

The rest of the paper has the following structure. Section 2 presents ARGEMmy
in detail. Section 3 arranges the log-linear approximation to the model equations
for simple policy rules in a matrix form suitable for model solution. Section 4 ad-
dresses the baseline calibration. Section 5 shows results from a search for the ranges
in which the individual simple policy rule coe¢ cients maintain the saddlepath sta-
bility of the model. Section 6 contains preliminary Bayesian estimation of a subset
of the model parameters, including the persistence coe¢ cients and standard errors
of the exogenous shock processes. Section 7 puts the set of non-policy log-linear
equations in a matrix form suitable for optimal policy analysis, introduces the
Central Bank loss function used, summarizes the theory for optimal policy under
commitment and full information, and shows numerical results for optimal policy
rules and resulting losses for the three policy regimes. Finally, section 8 concludes.
I relegate much of the material to Appendices, including the complete set of non-
linear and log-linear equations, the derivation of the recursive formulation of the
three Phillips equations, a detailed initial calibration of all the model parameters
and resulting steady state values of the endogenous variables, and a set of impulse
responses for the simple policy rules model that was estimated.
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2. The model
2.1. Households
In�nitely lived households are monopolistic competitors in the supply of di¤eren-
tiated labor. There is a domestic market for state-contingent securities that are
held by households, insuring them against pro�t and wage idiosyncratic risks (see
Woodford (2003)). This makes households essentially the same in equilibrium, and
allows us to maintain the representative household �ction (i.e. dispense with the
complexities that stem from household heterogeneity). Aside from these state-
contingent securities, they hold �nancial wealth in the form of domestic currency
(M0

t ) and peso denominated one period nominal deposits issued by domestic com-
mercial banks (Dt) that pay a nominal interest rate it. They consume a bundle of
domestic and imported goods and are unable to insure their real incomes against
the e¤ect of domestic and foreign in�ation and exchange rate developments. I as-
sume that the Central Bank fully and credibly insures depositors, so the deposit
rate is considered riskless.

2.1.1 The household optimization problem

The household holds cashM0
t because doing so it economizes on transactions costs.

I assume that consumption transactions involve the use of real resources and that
these transactions costs per unit of expenditure are a decreasing and convex func-
tion �M of the currency/consumption ratio $t:

�M ($t) � 0M < 0; � 00M > 0; (1)

$t �
M0

t

PC
t Ct

=
M0

t =Pt
pCt Ct

;

where Ct is a consumption index, and Pt and PC
t are the price indexes of domestic

goods and of the the consumption bundle, respectively. For convenience, I have
de�ned the relative price of consumption goods in terms of domestic goods:

pCt �
PC
t

Pt
:

All price indexes are in monetary units. The two basic price indexes in the SOE
are those of domestically produced ( �domestic�) goods, Pt, and imported goods
PN
t . The consumption price index is a CES composite of these basic price indexes,
as I detail below. The assumption in (1) is that when the currency/consumption
ratio $t increases, transactions costs per unit of consumption decrease, but at a
decreasing rate that re�ects a diminishing marginal productivity of currency in the
reduction of transactions costs.
I model nominal stickiness as in ARGEM (Escudé (2007)). In particular, house-

holds set wages under monopolistic competition with sticky nominal wages. House-
hold h 2 [0; 1] is the sole supplier of labor of type h, and makes the wage setting
decision taking the aggregate wage index and labor supply as parametric. Every
period, each household has a probability 1� �W of being able to set the optimum
wage for its speci�c labor type. This probability is independent of when it last set
the optimal wage. When it can�t optimize, the household adjusts its wage rate by
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fully indexing to last period�s overall rate of wage in�ation. Hence, when it can set
the optimal wage rate it must take into account that in any future period j there
is a probability �jW that its wage will be the one it sets today plus full indexation.
Hence, the household faces a wage survival constraint, according to which the wage
rate it sets at t, Wt(h), has a probability �

j
W of surviving (indexed) until period

t+ j:

Wt+j(h) =Wt(h)
Wt

Wt�1

Wt+1

Wt

:::
Wt+j�1

Wt+j�2
(2)

� Wt(h)�
W
t �

W
t+1:::�

W
t+j�1 � Wt(h)	

w
t;j;

where the rate of wage in�ation is de�ned as �Wt � Wt=Wt�1, and the cumulative
wage in�ation between t + j � 2 and t is 	wt;j, with 	wt;0 � 1: In deriving the �rst
order condition for Wt(h) below the following identity is used :

Wt(h)

Wt+j

	wt;j =
Wt(h)

Wt

�Wt �
W
t+1:::�

W
t+j�1

�Wt+1:::�
W
t+j�1�

W
t+j

=
Wt(h)

Wt

�Wt
�Wt+j

: (3)

The household also faces the labor demand function for its particular type of labor
as a constraint:

ht(h) = ht

�
Wt(h)

Wt

�� 
; (4)

where Wt is the aggregate wage index, de�ned as:

Wt =

�Z 1

0

Wt(h)
1� dh

�1=(1� )
; (5)

and where  is the elasticity of substitution between di¤erentiated labor services5.
When h sets the optimal wage, it must take into account that there is a probability
�jW that at time t + j its wage will be the Wt(h)	

w
t;j, and that hence the labor

demand it faces is:

ht+j(h) = ht+j

�
Wt(h)	

w
t;j

Wt+j

�� 
: (6)

The household receives income from pro�ts, wage, and interest, and spends on
consumption, taxes, and transactions costs. Its real budget constraint in period t
is:

M0
t (h)

Pt
+
Dt(h)

Pt
=
�t(h)

Pt
+
Wt(h)

Pt
ht(h)�

Tt(h)

Pt
+
�t(h)

Pt
(7)

+
M0

t�1(h)

Pt
+ (1 + it�1)

Dt�1(h)

Pt
�
�
1 + �M

�
M0

t (h)=Pt
pCt Ct(h)

��
pCt Ct(h)

where �t(h) is nominal pro�ts, ht(h) is hours of work, Tt(h) is lump sum taxes net
of transfers, and �t(h) is the income obtained in t from holding state-contingent
securities.

5I derive these equations from domestic intermediate �rms�cost minimization below.
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Household h maximizes an inter-temporal utility function which is additively
separable in the consumption of private goods Ct and leisure:

Et

1X
j=0

�j
�
zCt+j log [Ct+j(h)� �Ct+j�1(h)] +

�
h� �zHt+j

ht+j(h)
1+�

1 + �

��
; (8)

where � is the intertemporal discount factor, h is the maximum labor time available
(and hence the term in square brackets is "leisure"), � is a constant, � is the inverse
of the elasticity of labor supply with respect to the real wage, zCt and zHt are
consumption demand and labor supply shocks that are common to all households.
Consumption nests habit formation, where � is a positive parameter less than unity.
The household�s inter-temporal solvency is guaranteed by its inability to incur

in debt, which I assume does not bind in any �nite time:

Dt+T � 0; 8T � 0: (9)

Household h chooses Ct+j(h); Dt+j(h); M
0;H
t+j (h), (j=1,2,...) and Wt(h), by

maximizing (8) subject to its sequence of budget constraints (7), its combined
labor demands and wage survival constraints (6), and its �no debt� constraints
(9). Substituting for the labor demand constraints, the Lagrangian is hence:

Et

1X
j=0

�jfzCt+j log [Ct+j(h)� �Ct+j�1(h)] + h (10)

� (�W )j
�zHt+j
1 + �

 
ht+j

�
Wt(h)	

w
t;j

Wt+j

�� !1+�

+�t+j(h)

(
�t+j(h)

Pt+j
� Tt+j(h)

Pt+j
+ (�W )

j Wt(h)	
w
t;j

Pt+j
ht+j

�
Wt(h)	

w
t;j

Wt+j

�� 
�
�
1 + �M

�
M0

t+j(h)=Pt+j

pCt+jCt+j(h)

��
pCt+jCt+j(h) +

M0
t+j�1(h)

Pt+j

+(1 + it+j�1)
Dt+j�1(h)

Pt+j
�
M0

t+j(h)

Pt+j
� Dt+j(h)

Pt+j
+
�t+j(h)

Pt+j

��
:

where �j�t+j(h) are the Lagrange multipliers, and can be interpreted as the mar-
ginal utility of real income.
Since (aside from their labor type) households only di¤er on whether they can

choose the optimal wage, I eliminate the household index below, and use fWt to
distinguish the newly optimal wage from the aggregate wage index Wt (which in-
cludes both optimal and indexed wages). The �rst order conditions for an optimum
(including the transversality condition) are the following:

Ct :
zCt

Ct � �Ct�1
� ��Et

�
zCt+1

Ct+1 � �Ct

�
= �t'M

�
M0

t =Pt
pCt Ct

�
pCt (11)

Dt : �t = � (1 + it)Et

�
�t+1
�t+1

�
(12)
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M0
t : �t

�
1 + � 0M

�
M0

t =Pt
pCt Ct

��
= �Et

�
�t+1
�t+1

�
(13)

Wt : 0 = Et

1X
j=0

(��W )
j �t+jht+j

Wt+j

Pt+j

�
�Wt+j

� t (14)

�

8<:
 fWt

Wt

�Wt
�Wt+j

!
�  

 � 1
�zHt+j (ht+j)

�

�t+jWt+j=Pt+j

 fWt

Wt

�Wt
�Wt+j

!� �9=;
lim
t!1

�tDt = 0: (15)

In (12) and (13) the domestic goods in�ation rate �t+1 � Pt+1=Pt has been
de�ned, and in (11) the auxiliary function 'M gives the total e¤ect on expenditure
(i.e., including transactions cost related expenditures) of a marginal increase in
consumption. It is de�ned as:6

'M ($t) � 1 + �M ($t)�$t�
0
M ($t) ; (16)

which implies:
'0M ($t) = �$t�

00
M ($t) < 0:

(11) shows that in equilibrium the utility gain from a marginal increase in con-
sumption (left side of the equality), equals the foregone marginal utility of real
income it generates, including that which is related to transactions costs (given by
'M(:)). (12) states that the loss in utility from marginally increasing the holding
of deposits equals the expected utility of the addition to real interest income it
generates next period. And (13) states that the net loss of utility from marginally
increasing the holding of cash after taking into account the reduction in trans-
actions costs it generates, is equal to the expected marginal utility of having it
available tomorrow with its purchasing power corrected for in�ation.
Combining (12) and (13) yields:

�� 0M
�
M0

t =Pt
pCt Ct

�
= 1� 1

1 + it
; (17)

which shows that the optimum stock of currency as a fraction of expenditure in
consumption is such that the reduction in transactions costs generated by a mar-
ginal increase in this ratio equals the opportunity cost of holding cash. Inverting
�� 0M gives the following demand function for cash as a vehicle for transactions
(sometimes called �liquidity preference�function):

M0
t =Pt = L (1 + it) pCt Ct; (18)

where L (:) is de�ned as:

L (1 + it) � (�� 0M)�1
�
1� 1

1 + it

�
;

6'M (m=a) is the partial derivative of [1 + �M (m=a)] a with respect to a.
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and is strictly decreasing, since:

L0 (1 + it) =
�
�� 00M(:) (1 + it)

2��1 < 0:
From here on I replace the �rst order condition (13) by (18) and use (18) to
eliminate the household currency to consumption ratio wherever it appears through
the use of the following auxiliary functions:e'M (1 + it) � 'M (L (1 + it)) ; e�M (1 + it) � �M (L (1 + it)) : (19)

In particular, (11) can be written as:

zCt
Ct � �Ct�1

� ��Et

�
zCt+1

Ct+1 � �Ct

�
= �te'M (1 + it) pCt (20)

In (14), since all households that can set their optimal wage in t make the
same decision, the optimum wage rate is denoted fWt. Hence, (5) and (2) imply the
following law of motion for the aggregate wage rate (after taking into account that
in the Calvo setup, because optimizers are randomly chosen from the population,
their average wage rate in t� 1 is equal to the average overall wage level (indexed
by wage in�ation) no matter when they optimized for the last time):

W 1��
t = �W

�
Wt�1�

W
t�1
�1��

+ (1� �W )fW 1��
t : (21)

De�ning the real wage in terms of domestic goods and the relative wage between
the optimizers and the general level:

wt =
Wt

Pt
; ewt = fWt

Wt

;

the �rst order condition for Wt becomes:

0 = Et

1X
j=0

(��W )
j �t+jht+jwt+j

�
�Wt+j

� 
(22)(� ewt�Wt

�Wt+j

�
�  

 � 1
�zHt+j (ht+j)

�

�t+jwt+j

� ewt�Wt
�Wt+j

�� �)
:

And dividing through (21) by W 1��
t�1 and rearranging gives:

ewt�Wt =

 �
�Wt
�1�� � �W

�
�Wt�1

�1��
1� �W

! 1
1��

: (23)

Hence, (22) becomes the non-linear Phillips equation that determines the dynamics
of wage in�ation:

0 = Et

1X
j=0

(��W )
j �t+jht+jwt+j

�
�Wt+j

� �1
(24)8<:

 �
�Wt
�1�� � �W

�
�Wt�1

�1��
1� �W

! 1+ �
1��

�  

 � 1
�zHt+j (ht+j)

� ��Wt+j�1+ �
�t+jwt+j

9=; :

In Appendix 2 I obtain a recursive three equation version of this equation which
is actually used for simulation and estimation.
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2.1.2. Domestic and imported consumption

So far I have ignored the open economy attributes of consumption as well as product
di¤erentiation. I now distinguish between domestic and imported consumption
goods. The consumption index used in the household optimization problem is
actually a constant elasticity of substitution (CES) aggregate consumption index
of domestic and imported goods:

Ct =

�
aD

1

�C
�
CD
t

� �C�1
�C + aN

1

�C
�
CN
t

� �C�1
�C

� �C

�C�1
, aD + aN = 1: (25)

�C(> 0) is the elasticity of substitution between domestic and imported consump-
tion goods. Also, CD

t and C
N
t are themselves CES aggregates of the domestic and

imported (respectively) varieties of goods available:

CD
t =

�Z 1

0

CD
t (i)

��1
� di

� �
��1

; � > 1 (26)

CN
t =

�Z 1

0

CN
t (i)

�N�1
�N di

� �N

�N�1

; �N > 1: (27)

where � and �N are the elasticities of substitution between varieties of domestic
and imported goods in household expenditure, respectively. Total consumption
expenditure is:

PC
t Ct = PtC

D
t + PN

t C
N
t : (28)

Then minimization of (28) subject to (25) for a given Ct, yields the following
relations:

Pt = a
1

�C

D PC
t

�
CD
t

Ct

�� 1

�C

(29)

PN
t = a

1

�C

N PC
t

�
CN
t

Ct

�� 1

�C

: (30)

Introducing these in (25) yields the consumption price index:

PC
t =

�
aD (Pt)

1��C + aN
�
PN
t

�1��C� 1

1��C
: (31)

Furthermore, it is readily seen that aD and aN in (25) are the shares of domestic
and imported consumption in total consumption expenditures:

aD =
PtC

D
t

PC
t Ct

=
CD
t

pCt Ct
; aN = 1� aD =

PN
t C

N
t

PC
t Ct

=
pNt C

N
t

pCt Ct
; (32)

where

pNt �
PN
t

Pt

is the relative domestic price of imports in terms of domestic goods, or internal
terms of trade (ITT). I calibrate aD below as to have home bias (aD > 0:5 > aN).
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Conditions (29), and (30) are necessary for the optimal allocation of household
expenditures across domestic and imported goods. Similarly, for the optimal allo-
cation across varieties of domestic and imported goods within these classes, and
using (26), (27), the following conditions hold:

Pt(i) = Pt

�
CD
t (i)

CD
t

�� 1

�C

PN
t (i) = PN

t

�
CN
t (i)

CN
t

�� 1

�C

:

Finally, dividing (31) through by Pt yields a relation between the relative price of
consumption goods in terms of domestic goods and the ITT:

pCt =
h
aD + (1� aD)

�
pNt
�1��Ci 1

1��C
:

2.2. Domestic goods �rms
2.2.1. Final domestic goods

There is perfect competition in the production (or bundling) of �nal domestic
output Qt, with the output of intermediate �rms as inputs. A representative �nal
domestic output �rm uses the following CES technology:

Qt =

�Z 1

0

Qt(i)
��1
� di

� �
��1

; � > 1 (33)

where � is the elasticity of substitution between any two varieties of domestic goods
and Qt(i) is the output of the intermediate domestic good i. The �nal domestic
output representative �rm solves the following problem each period:

max
Qt(i)

Pt

�Z 1

0

Qt(i)
��1
� di

� �
��1

�
Z 1

0

Pt(i)Qt(i)di; (34)

the solution of which is the demand for each type of domestic good as a fraction
of aggregate domestic output that is itself an inverse function of the good�s price
relative to the aggregate domestic price index:

Qt(i) = Qt

�
Pt(i)

Pt

���
: (35)

Introducing (35) in (33) and simplifying, it is readily seen that the domestic goods
price index is:

Pt =

�Z 1

0

Pt(i)
1��di

� 1
1��

: (36)

Also, introducing (35) into the cost part of (34) yields:Z 1

0

Pt(i)Qt(i)di = PtQt:
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2.2.2. Intermediate domestic goods

A continuum of monopolistically competitive �rms produce intermediate domestic
goods using labor and imported inputs, with no entry or exit. They face perfectly
competitive bundlers of import goods and labor types. The production function
of �rm i is:

Qt(i) = �t (ztht(i))
bD ND

t (i)
1�bD (37)

where �t and zt are industry-wide productivity shocks (transitory and permanent,
respectively), ND

t is the consumption in production of intermediate imported in-
puts, and ht(i) is a CES index of all the labor types:

ht(i) =

�Z 1

0

ht(h; i)
 �1
 dh

�  
 �1

; (38)

where ht(h; i) is the amount of labor type h used by the domestic �rm i.

2.2.3. Marginal cost and input demands

I assume that a stochastic and possibly time-varying fraction & t of the cost bill is
�nanced by the domestic banking system. Let iLt be the bank nominal loan rate.
During period t the �rm formulates its demand for bank loans taking into account
its expected �nancing needs in period t+ 1. Its total variable cost in period t is:�

1 + & ti
L
t�1
� �
Wtht(i) + PN

t N
D
t (i)

�
To maximize pro�ts, the �rm must minimize costs. It takes as given the wages

Wt(h) set by the di¤erent households. Consider �rst the minimization of total
labor cost: Z 1

0

Wt(h)ht(h; i)dh (39)

subject to a constant aggregate index of labor types (38). I call the Lagrange
multiplier Wt. It does not depend on i since the problem is the same for all �rms.
Then the minimization results in i�s inverse demand function for labor type h:

Wt(h) =Wt

�
ht(h; i)

ht(i)

�� 1
 

: (40)

De�ning the aggregate demand (over all �rms) for labor of type h:

ht(h) =

Z 1

0

ht(h; i)di;

and the aggregate demand (over all �rms) for the labor bundle (over all households):

ht =

Z 1

0

ht(h)dh;

(40) implies the labor demand function (4) I used for the household problem.
Furthermore, introducing (40) in (38) yields:

Wt =

�Z 1

0

Wt(h)
1� di

� 1
1� 

;
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con�rming that the Lagrange multiplier is indeed the aggregate wage index as the
notation implied. And introducing (40) in (39) yields a more convenient expression
for the wage bill of �rm i:Z 1

0

Wt(h)ht(h; i)dh = Wtht(i):

I now obtain factor and bank loan demands by solving the following cost min-
imization problem:

min
ht(i);ND

t (i)
f
�
1 + & ti

L
t�1
� �
Wtht(i) + PN

t N
D
t (i)

�
g

subject to (37), where Qt(i) is given. The problem is the same for all �rms, so I
eliminate the �rm index. The �rst order conditions are:�

1 + & ti
L
t�1
�
Wtht = bDMCtQt (41)�

1 + & ti
L
t�1
�
PN
t N

D
t = (1� bD)MCtQt; (42)

where MCt is the Lagrange multiplier (and has the obvious interpretation of mar-
ginal cost). Adding these equations term by term and dividing by Pt gives:�

1 + & ti
L
t�1
� �
wtht + pNt N

D
t

�
= mctQt; (43)

where I de�ned the real wage wt and real marginal cost mct:

wt �
Wt

Pt
; mct �

MCt
Pt

:

Furthermore, introducing the �rst order conditions (41)-(42) in the production
function (37) yields the following expression for the real marginal cost:

mct =
1

��t

�
1 + & ti

L
t�1
�
(wt)

bD �pNt �1�bD ; (44)

where

wt �
Wt

ztPt
� wt

zt
is the e¢ ciency wage and

� �
�
bD
�bD �

1� bD
�1�bD

:

Aggregate demand functions for ht and ND
t are obtained directly from (41)-(42)

and (44):

ht =
1

��t
bD
�
pNt
wt

�1�bD
Qt=zt (45)

ND
t =

1

��t
(1� bD)

�
wt
pNt

�bD
Qt: (46)

Also, dividing (41) by (42) term by term gives the relation:

wtht =
bD

1� bD
pNt N

D
t : (47)

Finally, the aggregate real demand for bank loans by �rms in period t is:

Lt
Pt
= & tEt

�
wt+1ht+1 + pNt+1N

D
t+1

�
=

& t
bD
Et (wt+1ht+1) : (48)
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2.2.4. Sticky nominal price setting

Firms make pricing decisions taking the aggregate price and quantity indexes as
parametric. Every period, each �rm has a probability 1� �D of being able to set
the optimum price for its speci�c type of good and whenever it can�t optimize it
adjusts its price by fully indexing to last period�s overall rate of domestic in�ation.
Hence, when it can set its optimal price it must take into account that in any future
period j there is a probability �jD that its price will be the one it sets today plus
full indexation. Hence, the �rm�s price survival constraint states that the price it
sets at t, Pt(i) has a probability �

j
D of surviving (indexed) until period t+ j:

Pt+j(i) = Pt(i)�t�t+1:::�t+j�1 � Pt(i)	
p
t;j: (49)

where 	pt;0 � 1: Below I make use of the following identity:

Pt(i)

Pt+j
	pt;j =

Pt(i)

Pt

�t
�t+j

: (50)

Hence, I can express the �rm�s pricing problem as:

max
Pt(i)

Et

1X
j=0

�jD�
D
t;t+j

�
Pt(i)	

p
t;j

Pt+j
�mct+j(i)

�
Qt+j(i)

subject to

Qt+j(i) = Qt+j

�
Pt(i)	

p
t;j

Pt+j

���
:

�Dt;t+j is the pricing kernel used by domestic �rms for discounting, which is equal
to households�intertemporal marginal rate of substitution in the consumption of
domestic goods between periods t+ j and t:

�Dt;t+j � �j
UCD;t+j
UCD;t

:

Note that the marginal utility of consuming domestic goods may be obtained from
the marginal utility of consuming the aggregate bundle of (domestic and imported)
goods. Speci�cally:

UCD;t = UC;t
dCt
dCD

t

= UC;ta
1

�C

D

�
CD
t

Ct

�� 1

�C

= UC;t
Pt
PC
t

= UC;t
1

pCt
;

where the second equality if obtained by di¤erentiating (25) with respect to CD
t ,

and the third comes from (29). Hence, using (20), the pricing kernel of domestic
�rms is:

�Dt;t+j � �j
UCD;t+j
UCD;t

= �j
�t+je'M (1 + it+j)
�te'M (1 + it) � �j

�
D

t+j

�
D

t

: (51)

Hence, the �rm�s �rst order condition is the following:

0 = Et

1X
j=0

(��D)
j �

D

t+jQt+j (�t+j)
�

( ePt
Pt

�t
�t+j

� �

� � 1mct+j

)
: (52)
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Since all optimizing �rms make the same decision I call the optimum price ePt
and drop the �rm index. In the (modi�ed) Calvo setup, because optimizers are
randomly chosen from the population their average price in t� 1 is equal to that
period�s overall price index (indexed by the previous period�s in�ation) no matter
when they optimized for the last time. Hence, (36) implies the following law of
motion for the aggregate domestic goods price index:

P 1��t = �D (Pt�1�t�1)
1�� + (1� �D) eP 1��t : (53)

Dividing through by P 1��t�1 and rearranging yields:

ept�t =  (�t)1�� � �D (�t�1)
1��

1� �D

! 1
1��

: (54)

where I de�ne the optimal to average domestic relative price:

ept = ePt
Pt
:

Hence, using (54) I can express (52) as the (non-linear) Phillips equation that
determines the dynamics of domestic in�ation:

0 = Et

1X
j=0

(��D)
j �

D

t+jQt+j (�t+j)
��1

8<:
 
(�t)

1�� � �D (�t�1)
1��

1� �D

! 1
1��

� �

� � 1mct+j�t+j

9=; :

2.3. Foreign trade �rms
There are two types of foreign trade �rms: competitive primary goods producing
�rms that export all their output, and monopolistically competitive importers with
sticky local currency pricing.

2.3.1 Primary exports producing �rms

Firms in the export sector use domestic goods and "land" (representing natural
resources) to produce an export commodity. Land is assumed to be �xed in quan-
tity, hence generating diminishing returns. I assume that the export good is a
single homogenous primary good (a commodity). Firms in this sector sell their
output in the international market at the foreign currency price P ��Xt . They are
price takers in factor and product markets. The price of primary goods in terms
of the domestic currency is merely the exogenous international price multiplied
by the nominal exchange rate (vis a vis a trade-weighted basket of currencies):
StP

��X
t : I also assume that there is a mean one i.i.d. "climate" shock zAt that can

make the harvest greater or smaller than expected. In order to obtain a lagged
response in a simple way I assume that in period t export �rms sign contracts by
which they commit to delivering their (as yet unknown due to the "climate" shock)
(t+ 4)-period harvest (i.e., next year, same quarter) at known t-period unit prices
and exchange rates. Hence, though in t their export revenues have predetermined
prices and exchange rate they earn more or less than they expected according to
the realization of the "climate" shock.
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Let the production function employed by �rms in the export sector be the
following:

Xt = (zt�4)
1�bA �QDX

t�4
�bA

zAt ; bA < 1; (55)

where QDX
t is the amount of domestic goods used as input in the export sector,

and zt is the same permanent productivity shock we used for domestic sector �rms.
These �rms maximize expected pro�t

Et�
X
t+4 = StP

��X
t EtXt+4 � PtQ

DX
t

subject to (55). The �rst order condition yields the export sector�s (factor) demand
for domestic goods:

QDX
t = zt

�
bAetp

��
t

� 1

1�bA (56)

or equivalently:
QDX
t = bAetp

��
t EtXt+4; (57)

where I de�ned the SOE�s multilateral real exchange rate (MRER) and external
terms of trade (XTT):

et �
StP

��N
t

Pt
; p��t �

P ��Xt

P ��Nt

;

where P ��Nt is the price index of the foreign currency price of the SOE�s imports.
The XTT is exogenous as it is completely determined in the Rest of the World
(RW). Also, inserting the factor demand function in the production function shows
that optimal exports vary directly with the lagged product of the MRER and the
XTT:

Xt = zt�4
�
bAet�4p

��
t�4
� bA

1�bA zAt : (58)

According to my assumptions, the real value of exports in terms of domestic goods
is:

St�4P
��X
t�4 Xt

Pt
=
et�4p

��
t�4Xte�t = zt�4

�
bAet�4p

��
t�4
� 1

1�bAe�tbA zAt ; (59)

where I de�ned the year on year domestic in�ation at t as:

e�t = �t�t�1�t�2�t�3:

Henceforth, a tilde over an in�ation or growth rate variable will have the same year
on year meaning. (Note that the tilde in the auxiliary functions e'M(:) and e�M(:)
has an entirely di¤erent meaning.)

2.3.2. Imported goods �rms

Final imported goods Perfectly competitive importing �rms produce (or bun-
dle) �nal imported goods using the output of monopolistically competitive inter-
mediate imported goods producers. The representative �rm in this sector uses the
following CES technology:

Nt =

�Z 1

0

Nt(i)
�N�1
�N di

� �N

�N�1

; �N > 1;
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where �N is the elasticity of substitution between varieties of imported goods in
consumption. Maximizing pro�ts (as in (34) for �nal domestic output �rms) gives
the demand function that the intermediate importer of good i faces:

Nt(i) = Nt

�
PN
t (i)

PN
t

���N
: (60)

The resulting (domestic currency) price index for imported goods is:

PN
t =

�Z 1

0

PN
t (i)

1��Ndi

� 1

1��N

; (61)

and the import cost bill is: Z 1

0

PN
t (i)Nt(i)di = PN

t Nt:

Intermediate imported goods A continuum of monopolistically competitive
�rms generate intermediate imported goods. They buy a bundled �nal good abroad
at the foreign price and turn it into di¤erentiated goods to be sold in the domestic
market in domestic currency. They purchase the bundled �nal good at the price
StP

��N
t , where P ��Nt is the foreign currency price index of the imported bundle and

St is the nominal exchange rate (pesos per unit of foreign currency). Notice that
StP

��N
t is thus the marginal cost for these �rms. Their pricing (in the domestic

currency) follows the same setup we used for �rms producing domestic intermediate
goods, with a probability 1��N of optimal price setting and full indexation when
they can�t optimize price. According to the price survival constraint, the price
PN
t (i) the �rm sets at t has a probability �jN of surviving (indexed) until t+ j:

PN
t+j(i) = PN

t (i)�
N
t �

N
t+1:::�

N
t+j�1 � PN

t (i)	
N
t;j;

�
	Nt;0 � 1

�
: (62)

When the �rm optimizes it takes into account that there is a probability �jN that
the demand for its good in t+ j will be:

Nt+j(i) = Nt+j

 
PN
t (i)	

N
t;j

PN
t+j

!��N
: (63)

Hence, they solve:

max
PNt (i)

Et

1X
j=0

�jN�
N
t;t+jNt+j(i)

(
PN
t (i)	

N
t;j

PN
t+j

�
St+jP

��N
t+j

PN
t+j

)

subject to (63). �Nt;t+j is the pricing kernel used by importing �rms for discount-
ing. It is equal to households�intertemporal marginal rate of substitution in the
consumption of imported goods between periods t+ j and t:

�Nt;t+j � �j
UCN ;t+j
UCN ;t

:
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The marginal utility of consuming imported goods may be obtained from the mar-
ginal utility of consuming the aggregate bundle of (domestic and imported) goods.
Speci�cally:

UCN ;t = UC;t
dCt
dCN

t

= UC;ta
1

�C

N

�
CN
t

Ct

�� 1

�C

= UC;t
PN
t

PC
t

= UC;t
pNt
pCt
;

where the second equality if obtained by di¤erentiating (25) with respect to CN
t ,

and the third uses (30). Hence, using (20) the pricing kernel of import sector �rms
is:

�Nt;t+j � �j
UCN ;t+j
UCN ;t

= �j
�t+je'M (1 + it+j) pNt+j
�te'M (1 + it) pNt � �j

�
N

t+j

�
N

t

: (64)

Hence, after eliminating the �rm index, the �rst order condition for intermediate
importing �rms is:

0 = Et

1X
j=0

(��N)
j �

N

t+jNt+j(�
N
t+j)

�N

( ePN
t

PN
t

�Nt
�Nt+j

� �N

�N � 1
St+jP

��N
t+j

PN
t+j

)
:

Since all optimizing �rms make the same decision, I call the optimal import priceePN
t . Hence (61) and (62) imply the following law of motion for the aggregate
domestic currency import price index:�

PN
t

�1��N
= �N

�
PN
t�1�

N
t�1
�1��N

+ (1� �N)
� ePN

t

�1��N
: (65)

Using the de�nitions of et and pNt , I can express the preceding equations as:

0 = Et

1X
j=0

(��N)
j �

N

t+jNt+j(�
N
t+j)

�N
�epNt �Nt
�Nt+j

� �N

�N � 1
et+j
pNt+j

�
�
�Nt
�1��N

= �N
�
�Nt�1

�1��N
+ (1� �N)

�epNt �Nt �1��N ;
where epNt � ePN

t

PN
t

is the relative price between optimized and overall imported goods. EliminatingepNt �Nt , yields the Phillips equation for imported goods in�ation:
0 = Et

1X
j=0

(��N)
j �

N

t+jNt+j(�
N
t+j)

�N�1

�

8><>:
0@��Nt �1��N � �N

�
�Nt�1

�1��N
1� �N

1A 1

1��N

� �N

�N � 1
�Nt+jet+j

pNt+j

9>=>; :

Notice that
et
pNt

=
StP

��N
t

PN
t

re�ects the deviation (whenever it di¤ers from 1) from the Law of one Price for
imported goods.
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2.4. Banks
I assume that there is a competitive banking industry, with no entry, exit, or
mergers. Banks are owned by households, and are price takers in �nancial markets.
They obtain funds in the international market B�B

t , supply one period deposit
facilities to households Dt, and use the proceeds to supply one period loans to
�rms Lt, lend (or borrow) in the interbank market, and purchase (or sell) Central
Bank bonds BCB

t . Any interbank loans cancel out and pro�ts that arise from
period t-1 operations are distributed to owners in period t, so the balance sheet
constraint for the representative bank is:

Lt +BCB
t = Dt + StB

�B
t : (66)

I assume that deposits are perfect substitutes for Central Bank bonds (so they earn
the same interest rate it) but households may not invest directly in these bonds
(possibly because there is a minimum amount allowed for such investments which
only the banks can achieve). I assume that interest on banks�foreign debt is paid
out in the following period, just before pro�ts are distributed to owners. Since
banks� business is assumed to be in domestic currency, they face (uninsurable)
exchange rate uncertainty. For every unit of foreign currency they repay they must
expect to have pesos in the amount of

Et�t+1(1 + i
B
t );

where iBt is the nominal interest rate they are charged abroad and �t+1 is the
nominal rate of currency depreciation:

�t+1 =
St+1
St

:

I assume that banks must pay a (risk and/or liquidity) premium over the in-
ternational riskless rate i��t for the funds they obtain abroad. Since I do not model
the rest of the world, the premium (function) is exogenously given. It has an ex-
ogenous stochastic and time-varying component ���Bt (that can represent general
liquidity conditions in the international market) as well as an endogenous (more
risk-related) component pB(:) that is an increasing convex function of the GDP
adjusted (individual) bank foreign debt. Individual banks thus fully internalize
the fact that their individual foreign debt decision determines the foreign currency
interest rate they face, which is:

1 + iBt = (1 + i��t )�
��B
t

�
1 + pB

�
StB

�B
t

PtYt

��
; (67)

where I assume p0B > 0 and p
00
B > 0.

Banks have a real cost function that depends on the (previous period�s) real
loan creating activities of the bank. I assume this cost function is quadratic.
Speci�cally, I assume the following real cost function:

CB
t+1 =

1

2
bB
�
Lt
ztPt

�2 �
bB > 0

�
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The representative bank maximizes expected pro�t each period:

Et�
B
t+1 = iLt Lt + it

�
BCB
t �Dt

�
� Et�t+1i

B
t StB

�B
t � Pt

1

2
bB
�
Lt
ztPt

�2
subject to its balance sheet constraint (66), and its supply of foreign funds con-
straint (67). The solution to this problem gives the supply of loans as a simple
linear function of the loan margin iLt � it (68) and the optimal amount of foreign
funding in the form of a "risk-adjusted uncovered interest parity" relation (69):

LSt
ztPt

=
1

bB
�
iLt � it

�
(68)

it = Et�t+1

�
(1 + i��t )�

��B
t

�
1 + 'B

�
StB

�B
t

PtYt

��
� 1
�
; (69)

where the following auxiliary function has been de�ned:

'B (a) � pB (a) + ap0B (a) = pB (a) [1 + "B(a)] ; (70)

where

"B(a) � a
p0B (a)

pB (a)

is the elasticity of the endogenous risk premium function.
Given LSt , D

S
t , and B

�B
t , the aggregate bank demand for Central Bank bonds

is given by the aggregate bank balance sheet constraint:

BCB;D
t = DS

t + StB
�B
t � LSt : (71)

2.5. The public sector
The public sector is made up of the Government and the Central Bank.

2.5.1. The Government

The Government issues foreign currency denominated bonds in the international
markets and pays interest on these bonds, spends on goods, and collects taxes. I
assume that �scal policy consists of exogenous paths for nominal lump-sum tax
collection (Tt) and real expenditures (Gt). The Government �nances any resulting
de�cit by issuing foreign currency denominated bonds (B�G

t ). I assume that an
integral component of �scal policy is the (credible) commitment to achieve a long
run target for the foreign debt to GDP ratio (
GT ). To hold foreign currency
denominated government bonds, foreign investors charge a risk premium over the
risk-free foreign interest rate. As in the case of banks, the risk premium (function)
is exogenously given and is assumed to have an exogenous stochastic component
(an external �nancing shock) and an endogenous component. I assume that the
latter is an increasing function of the public sector net foreign liability to GDP
ratio. Hence the gross interest rate on the government�s foreign debt is:

1 + iGt = (1 + i��t )�
��G
t

"
1 + pG

 
St
�
B�G
t �R�CBt

�
PtYt

!#
: (72)

where p0G > 0, and R
�CB
t is the Central Bank�s international reserves.

The Government �ow budget constraint is:

StB
�G
t = PtGt � Tt + (1 + iGt�1)StB

�G
t�1: (73)
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2.5.2. The Central Bank

The Central Bank issues currency (M0
t ) and domestic currency bonds

�
BCB
t

�
, and

holds international reserves
�
R�CBt

�
in the form of foreign currency denominated

riskless bonds issued by the RW. I assume that Central Bank bonds are only held
by domestic banks. The (�ow) budget constraint of the Central Bank is:

M0
t +BCB

t � StR
�CB
t =M0

t�1 + (1 + it�1)B
CB
t�1 � (1 + i�t�1)StR�CBt�1 (74)

=
�
M0

t�1 +BCB
t�1 � St�1R

�CB
t�1
�
�
�
i�t�1StR

�CB
t�1 + (St � St�1)R

�CB
t�1 � it�1B

CB
t�1
�
:

The second term in square brackets after the last equality is the Central Bank�s
quasi-�scal surplus (QFt). It includes interest earned and capital gains on inter-
national reserves minus the interest paid on its bonds. I assume that the Central
Bank transfers its quasi-�scal surplus (or de�cit) to the Government every period.
Hence, its net wealth is constant. Furthermore, assuming its net worth is zero, the
Central Bank�s balance sheet "constraint" is always preserved:

M0
t +BCB

t � StR
�CB
t =M0

t�1 +BCB
t�1 � St�1R

�CB
t�1 = 0: (75)

The Central Bank supplies whatever amount of cash is demanded by households,
and can in�uence these supplies by changing R�CBt or BCB

t , i.e. intervene in the
foreign exchange market or in the interbank cum Central Bank bond market.

2.5.3. The consolidated public sector

Adding (73) and (74) term by term and using (75) gives the consolidated public
sector budget constraint:

StB
�G
t = (1 + iGt�1)StB

�G
t�1 � (Tt � PtGt)�QFt; (76)

where QFt is the Central Bank�s quasi-surplus:

QFt �
�
i��t�1 + (1� St�1=St)

�
StR

�CB
t�1 � it�1B

CB
t�1 (77)

The Government sells foreign currency bonds in international capital markets to
the extent that the sum of its capital repayments and interest payments on these
bonds exceeds the sum of the domestic currency value of the Central Bank�s quasi-
surplus and the Government�s primary surplus (Tt � PtGt).

2.6. Market clearing equations, GDP, and the balance payments
In the labor market, the household supply of labor ht equals domestic �rms�de-
mand (45):

ht =
bD

��t

�
pNt
wt

�1�bD
Qt

zt
: (78)

In the loan market, bank loan supply (68) equals loan demand by �rms (48),
yielding the following expression for the loan rate:

iLt = it +
bB& t
bDzt

Et (wt+1ht+1) = it +
bB& t
bD

Et

�
zt+1
zt

wt+1ht+1

�
: (79)
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In the domestic goods market, the output of domestic �rms Qt must satisfy
�nal demand from households (including transactions cost related consumption of
output) and the Government, as well as intermediate demand from the export and
banking sectors:

Qt = [aD + e�M (1 + it)] pCt Ct +Gt + zt
�
bAetp

��
t

� 1

1�bA +
zt
2bB

�
iLt � it

�2
: (80)

Expenditure in total imports pNt Nt, is the sum of household and �rm demand:

pNt Nt = (1� aD) p
C
t Ct + pNt N

D
t (81)

= (1� aD) p
C
t Ct +

1� bD

bD
wtht;

where the second equality uses (47).
GDP in terms of domestic goods is:

Yt = pCt Ct +Gt +
et�4p

��
t�4e�t Xt � pNt Nt; (82)

where exports and imports are given by (59) and (81), respectively.
The balance of payments and trade balance equations are:

B�G
t +B�B

t �R�CBt = (1+iGt�1)B
�G
t�1+

�
1 + iBt�1

�
B�B
t�1�

�
1 + i��t�1

�
R�CBt�1 �TBt; (83)

TBt = P ��Xt�4 Xt � P ��Nt Nt = P ��Nt

�
p��t�4e���Nt

Xt �Nt

�
(84)

where I use the year on year import in�ation at t:

e���Nt = ���Nt ���Nt�1 �
��N
t�2 �

��N
t�3 :

2.7. Monetary Policy
The model allows for di¤erent monetary and exchange rate policy regimes. My
baseline is what I call a �Managed Exchange Rate�(MER) regime. In this regime,
the Central Bank, through its regular interventions in the money and foreign ex-
change markets, aims for the achievement of two operational targets: one for the
interbank interest rate it; and another for the rate of nominal depreciation against
a trade-weighted basket of currencies �t. Using fairly general feedback rules, the
Central Bank responds to deviations of the consumption year on year in�ation rate
(e�Ct ) from a target (e�T ), and to deviations of detrended GDP and the trade balance
to GDP ratio (and possibly its lagged value) from the NSS levels of the respective
variables7. Variables without a time subscript denote non-stochastic steady state

7With more microfoundation, instead of the deviations from the nonstochastic steady state
levels one would like to use deviations from �natural� levels that are based on private welfare.
In a closed economy setting, Rotemberg and Woodford (1999) and Woodford (2003) show that
the levels that correspond to a reference economy with no nominal rigidities (but subject to the
same shocks as the model economy) have a solid microeconomic justi�cation based on household
welfare. However, De Paoli (2006) shows that in an open economy setting the same kind of
calculations lead to more complex target levels where merely assuming no nominal rigidity is
not enough. In this paper I use an ad-hoc loss function for the Central Bank instead of a
microfounded one and completely sidestep the issue by assuming that both the simple policy
rules and the Central Bank loss function (that leads to the optimal policy rules) respond to the
deviations from the nonstochastic steady state.
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values. I assume that the long run in�ation target (which is also the steady state
level of in�ation) is positive: e�Tt > 1. (In practice, I also assume it is constant).
I introduce history dependence in the two feedback rules through the presence of
the lagged operational target variable, as well as a long run target for international
reserves in the case of foreign exchange market intervention. The simple feedback
rules are the following:

1 + it = �
TR (1 + it�1)

h0

 e�Cte�Tt
!h1 �

Yt=zt

(Yt=zt)
T

�h2 �StTBt=PtYt

TBT

�h3
; (85)

where

�TR �
�
�z���

�

�1�h0
; h0 � 0; h1 � 0; h2 � 0; h1h2 6= 0: (86)

and

�t = �
FXI (�t�1)

k0

 e�Cte�Tt
!k1 �

Yt=zt

(Yt=zt)
T

�k2 �StTBt=PtYt

TBT

�k3
(87)

�
�
StR

�CB
t = (PtYt)


CBT

�k5
exp("�t )

where

�FXI �
� �

���N

�1�k0
; k5 6= 0: (88)

"�t is an i.i.d. nominal depreciation rate policy shock (without persistence). The
multiplicative terms (�TR) and (�FXI) in the feedback rules are designed so as
to obtain a non-stochastic steady state where the in�ation target is achieved and
the nominal rate of depreciation is consistent with it.8 During the transition, the
coe¢ cients in these feedback rules indicate the direction and magnitude of Central
Bank responses to deviations of each of these variables from their targets. They
translate the Central Bank high frequency actions (hourly, daily or weekly) to
the model�s quarterly frequency. 
CBT is a long run target for the Central Bank
reserves to GDP ratio, and 
TBT is a long run target for the trade balance to GDP
ratio. The latter should be consistent with the country�s long run foreign debt
service (and, hence, with the �scal assumptions which are explicit in the model).9

In order to be able to accommodate non-feedback policies, either one of the
feedback rules (or both) can be replaced by a simple autorregresive rule: the interest
rate feedback rule by an AR(1) on Central Bank bonds or, if there is a feedback
rule for the rate of nominal depreciation, on Central Bank international reserves,
and the nominal depreciation rate feedback rule by an AR rule on the same variable
or on Central Bank international reserves. Such non-feedback rules imply policies
more akin to an �automatic pilot�type of monetary and/or exchange rate policy.
For optimal policies, in section 7 I explicitly model two �extreme�policy regimes

that result in models that are �nested�with respect to the general model. In a

8Notice that I could just as well say that "the nominal rate of depreciation target is achieved
and the in�ation rate is consistent with it".

9I deal with the nonstochastic steady state at length in Appendix 5.
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�Floating Exchange Rate�(FER) regime the Central Bank abstains from interven-
ing in the foreign exchange market. Hence, the policy rule for the rate of nominal
depreciation is eliminated and so is the Central Bank foreign exchange reserves
variable (in real terms and made stationary) r�CBt = R�CBt =

�
ztP

��N
t

�
, by replacing

it with its NSS value r�CB as a parameter. In a �Pegged Exchange Rate�(PER)
regime, the Central Bank abstains from intervening in the money market. Hence,
the policy rule for the interest rate is eliminated and so is the Central Bank domes-
tic currency bonds variable (in real terms and made stationary) bCBt = BCB

t = (ztPt),
by replacing it with its NSS value bCB as a parameter.
Although the paper speci�cally addresses the case of two CB policy rules, note

that the model could be modi�ed to re�ect an institutional arrangement in which
the CB is in charge of �monetary�policy while the Government (Treasury) is in
charge of the foreign exchange policy. This would require a few changes in the
model (since the CB balance sheet would not be enough to re�ect the restriction
that involves short run debt, FX reserves, and CB cash liabilities) and the assump-
tion of full coordination between the two agencies so that the loss function would
correspond to the consolidated government (and not exclusively the CB).

2.8. Permanent productivity shocks
Growth is introduced in the model through the SOE�s permanent productivity
shock zt and its relation with its equivalent in the RW: z��t . I assume that the
RW�s permanent productivity growth �z��t � z��t =z

��
t�1 is governed by an exogenous

process:

�z��t =
�
�z��t�1

���z��
(�z��)1��

�z��

exp
�
"�

z��

t

�
; (89)

where "�
z��

t is an i.i.d. technology shock. On the other hand, the SOE�s permanent
productivity growth �zt � zt=zt�1 is assumed to be governed by the following
stochastic process:

�zt =
�
�zt�1

���z �
�z��t�1

�1���z �
z�t�1

���z exp�"�zt � ; (90)

where "�
z

t is an i.i.d. technology shock and z�t � z��t =zt is the ratio between the
permanent productivity levels in the SOE and the RW. During the transition, the
growth rate of the RW in�uences the growth rate of the SOE through the coe¢ cient
1���z , while the growth rate of the SOE has no in�uence on the rate of growth of
the RW.10 Also, the persistence coe¢ cients may be di¤erent, and the disturbance
terms may be correlated. Notice that the following identity holds:

�z��t

�zt
=
z��t =z

��
t�1

zt=zt�1
=

z�t
z�t�1

: (91)

I assume that in the non-stochastic SS the productivity levels and growth rates in
the RW and the SOE are equal: z� = 1 and �z = �z��. (89)-(91) are additional
model equations.
10I am hence assuming that there is a cointegrating relation between the (logs of the) permanent

technology shocks in the LRW and the SOE which includes a direct lagged in�uence of the
LRW�s rate of technological growth on that of the SOE but no reciprocal in�uence. This appears
consistent with the intuitive notion of a SOE that is also less developed and hence its technological
innovations have an insigni�cant in�uence on the LRW�s innovations but absorbs a signi�cant
fraction of the LRW�s innovations.
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2.9. Functional forms for the auxiliary functions
The speci�c functional form I use for the transactions cost function is the following:

�M ($t) � aM$t +$�bM
t + cM ; aM ; bM > 0: (92)

There is a satiation level of the cash/consumption ratio after which the function
becomes increasing in its argument. Obviously, only the decreasing portion of
the function is relevant. There are three parameters for calibration: aM , bM , cM .
According to (18), the resulting liquidity preference function is:

$t =
m0
t

pCt ct
= L (1 + it) �

"
bM

aM + 1� 1
1+it

# 1
1+bM

: (93)

Hence, the money market clearing equation and the transactions cost equation
(two of the model equations), are:

m0
t =

"
bM

aM + 1� 1
1+it

# 1
1+bM

pCt ct (94)

e�Mt = aM

"
bM

aM + 1� 1
1+it

# 1
1+bM

+

"
bM

aM + 1� 1
1+it

# �bM
1+bM

+ cM : (95)

Also, the resulting auxiliary function for the total e¤ect on expenditure of a mar-
ginal increase in consumption (16) is:

'M ($t) = 1 + cM + (1 + bM)$
�bM
t ;

giving another of the model equations:

e'Mt = 1 + cM + (1 + bM)

"
bM

aM + 1� 1
1+it

# �bM
1+bM

: (96)

Note that (95) and (96) are used as model equations merely to make other equa-
tions simpler. From (94) I derive the elasticity of cash demand (as a fraction of
consumption) with respect to the gross interest rate that is useful for calibration:

"m
0

t =
$1+bM
t

(1 + bM) bM (1 + it)
: (97)

For the bank risk premium I use the following functional form:

pB
�
etb

�B
t =yt

�
� �B1
1� �B2 etb

�B
t =yt

; �B1 > 0; �
B
2 > 0: (98)

Hence, in the risk-adjusted uncovered interest parity equation (70) 'B (:) is:

'B
�
etb

�B
t =yt

�
=

�B1

(1� �B2 etb
�B
t =yt)

2 ; (99)
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and the elasticity of pB (:) is:

"B
�
etb

�B
t =yt

�
� 1

1

�B2 (etb�Bt =yt)
� 1

: (100)

The government risk premium has the same functional form as the one for
banks:

pG
�
et
�
b�Gt � r�CBt

�
=yt
�
� �G1
1� �G2 et (b

�G
t � r�CBt ) =yt

; �G1 > 0; �
G
2 > 0:

(101)

3. The loglinear approximation to ARGEMmy in matrix form
The model equations of the log-linear approximation to the equations of ARGEMmy
(excluding the autoregressive processes for the disturbance variables Zt) around the
NSS can be expressed in matrix form as:�

B0
11 B0

12

B0
21 B0

22

� �
Xt

Yt

�
=

�
0 0
A021 A022

�
Et

�
Xt+1

Yt+1

�
(102)

+

�
C011 C012
C021 C022

� �
Xt�1
Yt�1

�
+

�
J011 J012
J021 0

� �
Zt
Zt�1

�
+

�
{Xt+1
0

�
:

The �rst block row in (102) includes all static equations and all dynamic equations
that do not include forward-looking terms, and the second block row includes the
remaining equations, i.e., those that include forward-looking terms. Vectors Xt

and Yt are formed by the loglinear deviations of the endogenous variables from
their NSS values in such a way that matrices B0

11 and B
0
22 are square. The �rst two

of the equations in the �rst block row correspond to the simple feedback rules for
the interest rate and the nominal rate of currency depreciation, respectively. {Xt
includes the i.i.d. shocks that directly a¤ect some of the equations without speci�c
autorregressive dynamics (that would justify additional equations). In particular, it
includes the shocks to the policy rules and the shock to the permanent productivity
growth equation. More compactly, the system is:

B0dt = A0Etdt+1 + C0dt�1 + J0 eZt � {dt+1; (103)

where

dt =

�
Xt

Yt

�
; eZt = � Zt

Zt�1

�
; {dt =

�
{Xt
0

�
A0 =

�
0 0
A021 A022

�
;

B0 =

�
B0
11 B0

12

B0
21 B0

22

�
; C0 =

�
C011 C012
C021 C022

�
; J0 =

�
J011 J012
J021 0

�
:

The system has been previously simpli�ed to substitute out variables lagged
by more than one quarter. For example, since I have a fourth lag for the RER
(e), I de�ned new variables for the �rst, second, third and fourth lags (be1t, be2t,be3t, be4t, respectively), so that in each new equation only one lag is used. Almost
exactly the same procedure was followed for the fourth lag of the ToT (bp��X). The
only di¤erence is that since this variable represents an exogenous disturbance that
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follows an AR(1) process (and is hence in vector Zt), in order to eliminate lags 2
to 4 I also de�ned a new endogenous variable bp��X0;t that is included in the vector of
endogenous variables to obtain connectivity between the exogenous and endogenous
ToT variables. Since the system includes year on year gross rates of domestic and

consumption in�ation (be�Dt and be�Ct , respectively), permanent productivity growth
(be�zt ), and nominal rate of depreciation (be�Mt ), new variables were introduced in order
to eliminate the lags 2 to 4.
Hence, vectors Xt and Yt are the following:

Xt � [ bit b�Mt br�CBt
btbt bnt bbCBt biGt bb�Gt biBt cmct bht bqt byt bpCt beCtbm0

t
be'Mt be�Mt b̀

t
bdt b�zt b�Wt b�t b�Nt bz�t bet b�Ct bwt bpNt bxt tbbrtbe�t b�1t b�2t b�3t be�Ct b�C1t b�C2t b�C3t be�t b�1t b�2t b�3t be�zt b�z1t b�z2t b�z3tbe1t be2t be3t be4t bp��X0t bp��X1t bp��X2t bp��X3t bp��X4t ]0;

Yt � [bct b��t bb�Bt biLt btt brt b�Wt b	Wt b�Dt b	Dt b�Nt b	Nt ]0:

Xt includes 31 main variables (the �rst 2 rows of Xt above) and 25 additional
variables that may be considered auxiliary and related to lag reduction.11 Vector Yt
includes the endogenous variables associated to the equations that include forward-
looking terms. I thus have a total of 66 (=31+25+12) endogenous variables in the
subsystem given by (102). Noting that none of the elements in the main diagonal
of B0 are zero (by construction), I found it convenient to normalize the equation
coe¢ cients by multiplying through by the matrix D00 formed by the inverses of
those elements, transforming (103) to:

B00dt = A00Etdt+1 + C00dt�1 + J00 eZt �D00{dt+1; (104)

where now B00 has ones on its main diagonal and:

A00 = D00A0; B00 = D00B0; C00 = D00C0; J00 = D00J0

The rest of the linear system is given by the autorregressive dynamics of the
disturbances included in vector Zt:

Zt � [bgt bzCt bzHt b�t bzAt b& t b���Nt
bi��t b���Bt

b���Gt b�z��t bp��Xt ]0:

which can be expressed as:
Zt =MZt�1 + {Zt

where all the eigenvalues ofM are within the unit circle and {Zt is an i.i.d. stochas-
tic process. It is convenient to stack this matrix equation with the same equation
lagged one period:�

Zt
Zt�1

�
=

�
M 0
0 M

� �
Zt�1
Zt�2

�
+

�
{Zt
{Zt�1

�
:

11Note that these complications are unnecessary when using Dynare for solving the system.
However, I found that Dynare is not yet in working form for obtaining optimal policy rules using
a medium-size model such as ARGEMmy.
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or eZt+1 = fM eZt + e{Zt+1; (105)

where fM =

�
M 0
0 M

�
; e{Zt = � {Zt

{Zt�1

�
:

Finally, note that the consumption dynamics equation, which is in the second block
row of (102), includes a term Etz

C
t+1. Using the AR(1) equation for the dynamics

of zCt , that term has been replaced by �z
C
zCt . More generally, matrix J

0
21 is the

sum of two matrices:
J021 = J0�21 + J0��21 M;

one that includes the coe¢ cients on current disturbances (say J0�21Zt) and an-
other that corresponds to coe¢ cients on expected disturbances (say J0��21 EtZt+1 =
J0��21 MZt).
Hence, the initial loglinear system is de�ned by (104) and (105). I now proceed

to transform subsystem (104) by also substituting out all lagged variables, i.e.,
all the elements of Xt�1 and Yt�1 that appear in the equations, and thus put the
system in a form suitable for solving by applying the generalized Schur (or QZ)
decomposition of a matrix pencil (as in Klein (2000)). Since only a subset of the
variables in vectors Xt and Yt actually appear lagged (in at least one equation)
and my experience is that the null columns of matrix C tend to create problems
in the computation of the solution (by making the Z11 submatrix singular), I
de�ne selector matrices SX and SY that select only the elements of Xt and Yt that
actually appear lagged. Correspondingly, I de�ne new, lower dimensional, vectors
X t = SXXt�1 and Y t = SY Yt�1 that contain all these lagged variables. I also
de�ne matrices

C
00

j1 = C00j1S
0
X ; C

00

j2 = C00j2S
0
Y ; j = 1; 2;

that have the same non-zero elements as matrices C00ij but leave out the columns of
zeros. Notice that, by construction, Cj1X t = Cj1Xt and Cj2Y t = Cj2Yt (j = 1; 2).
Hence, (104) becomes: �

X t+1

Y t+1

�
=

�
SX 0
0 SY

� �
Xt

Yt

�
; (106)�

B00
11 B00

12

B00
21 B00

22

� �
Xt

Yt

�
=

�
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A0021 A0022

�
Et

�
Xt+1

Yt+1

�
+

"
C
00

11 C
00

12

C
00

21 C
00

22

# �
X t

Y t

�
+

�
J0011 J0012
J0021 0

� �
Zt
Zt�1

�
�
�
D00
11 0
0 D00

22

� �
{Xt+1
0

�
;

where X t contains the 34 elements of Xt�1 that appear in the system:

X t � [bit�1 b�t�1 br�CBt�1
btbt�1 bbCBt�1 biGt�1 bb�Gt�1 biBt�1 byt�1 bpCt�1 b�zt�1 b�Wt�1b�t�1 b�Nt�1 bz�t�1 bet�1 b�Ct�1 bwt�1 bpNt�1 b�1;t�1 b�2;t�1 b�C1;t�1 b�C2;t�1 b�1;t�1b�2;t�1 b�z1;t�1 b�z2;t�1 be1;t�1 be2;t�1 be3;t�1 bp��X0;t�1 bp��X1;t�1 bp��X2;t�1 bp��X3;t�1 ]0;
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and Y t contains the 3 elements of Yt�1 that appear:

Y t � [ bct�1 bb�Bt�1 biLt�1 ]0:
System (106) can be written more compactly as:

kt+1 = Sdt (107)

A00Etdt+1 = B00dt � C
00
kt � J00 eZt +D00{dt+1;

where

kt =

�
X t

Y t

�
; dt =

�
Xt

Yt

�
; S =

�
SX 0
0 SY

�
;

A00 =

�
0 0
A0021 A0022

�
; B00 =

�
B00
11 B00

12

B00
21 B00

22

�
; D00 =

�
D00
11 0
0 D00

22

�
C
00

=

"
C
00

11 C
00

12

C
00

21 C
00

22

#
; J00 =

�
J0011 J0012
J0021 0

�
; {dt =

�
{Xt
0

�
:

kt and dt are the vectors of predetermined and jump variables, respectively. I now
stack (107) along with (105) as:24 I 0 0

0 I 0
0 0 A00

3524 eZt+1
kt+1
Etdt+1

35 =
24 fM 0 0

0 0 S

�J00 �C00 B00

3524 eZt
kt
dt

35+
24 e{Zt+1

0
D00{dt+1

35 ;
or

AEtbst+1 = Bbst + b{t+1;
where:

bst =

�
k+t
dt

�
�

24 eZt
kt
dt

35 ; A =

24 I 0 0
0 I 0
0 0 A00

35 ;
B =

24 fM 0 0
0 0 S

�J00 �C00 B00

35 ; b{t = � {k+t
D00{dt

�
; {k+t+1 =

� e{Zt+1
0

�
:

Solving this system by means of the QZ decomposition and reinserting the inno-
vations yields the time series representation of the DSGE model:

k+t+1 = Gk+t + {k
+

t+1

dt = Kk+t ;

or, partitioning G and K conformably with k+t :eZt+1 = Gzz
eZt +Gzkkt + e{Zt+1

kt+1 = Gkz
eZt +Gkkkt +D00

11{kt+1
dt = Kz

eZt +Kkkt:
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4. Baseline calibration, and dogmatic priors
Appendix 5 includes an analysis of the NSS and a detailed baseline calibration.
The steps shown there (with some inessential changes) were implemented in a
MATLAB m-�le that interacts with the Dynare mod-�le that contains the model
and stochastic simulation or estimation instructions. A number of great ratios and
structural parameters jointly determine the steady state values of the endogenous
variables. Since I have di¤erent strengths of opinion for di¤erent great ratios and
since substantial identi�cation problems have to be surpassed by means of the
imposition of �dogmatic priors�for some of the parameters, I have divided them in
two categories. For the �rst group I use dogmatic priors and impose them on the
model. For the second group my priors are less strong and hence I allow them to
vary endogenously with the parameter values that are either estimated or imposed.
I also impose the steady state values of a small subset of the endogenous variables.
The steady state values for endogenous variables that were imposed were the

trend adjusted GDP (at 10% above the 2005 level at constant 1993 prices: y =
585:5), the Government foreign debt interest rate (1 + iG = 1:070:25), and the
bank loan interest rate (1 + iL = 1:120:25). I also imposed the Central Bank
in�ation target (which determines the domestic in�ation rates: �T = 1:0650:25)
and the steady state values of a few of the RW shock variables subject to au-
torregresive processes: the exogenous risk/liquidity premia for banks and the
government (

�
���B

�4
=
�
���G

�4
= 1:005) and the external terms of trade shock

(p� = 0:0047634357).
The great ratios (to GDP) I imposed are: the Government�s expenditure ratio

(g=y = 0:16) and foreign debt ratio (
GT = eb�G=y = 0:2), households�cash ratio
(m0=y = 0:08), the Central Bank�s international reserves ratio (
CBT = er�CB=y =
0:13), Banks� foreign debt ratio (eb�B=y = 0:0658) and loan ratio (`=y = 0:23),
and the economy�s imports ratio (pNN=y = 0:22). I also imposed households�
transactions cost to consumption expenditures ratio (�M = �Mc=c = 0:001).
The parameter values I imposed are the intertemporal discount rate (� = 0:999),

the share of domestic goods in household expenditures (or home bias parameter
aD = 0:8610526316), the inverse of the elasticity of labor supply with respect to
the real wage (� = 0:7), the elasticities of the endogenous risk premia for the gov-
ernment ("G = 0:833397207) and banks ("B = 1:15745156), the interest elasticity
of cash demand by households ("M = 0:85), and the persistence parameters for
the consumption shock (�z

C
= 0:85) and the Central Bank international reserves

policy rule (whenever it was used: �r
�CB

= 0:1).
The estimated parameters are the coe¢ cients in the policy rules, the elasticities

of substitution (ES) between imported varieties (�N) and between labor varieties
( ), the ES between domestic and imported goods in consumption (�C), the pa-
rameters in the production functions of the domestic (bD) and export goods (bA)
sectors, the habit parameter (�), the Calvo probabilities of not setting the optimal
price for domestic goods (�D), imported goods (�N) and wages (�W ), and the pa-
rameters related to the evolution of the rate of growth of productivity (��z , ��

z
).

The remaining persistence parameters were also estimated:

�z
H

; ��; �& ; �z
A

; �p
�
; ��

�N
; �i

�
; ��

�B
; ��

�G
; ��

z�
; �g;

along with the fourteen standard deviations of the exogenous shocks.
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The values of the remaining parameters and great ratios are determined endoge-
nously from the previous estimated or imposed values using steady state equations.
The endogenous parameters are:

�; �; bB; �G1 ; �G2 ; �B2 ; �B1 ; aM ; bM ; cM ;

And the endogenous great ratios are:

q

y
;
pCc

y
;
wh

y
;
etb

y
;

�
bAep��

� 1

1�bA =bA

y
; $ � m0

pCc
;
qDX

y
;
nD

n
;

bCB

y
;
d

y
:

In particular, the Central Bank and Bank balance sheets therefore imply the
Central Bank domestic bonds ratio (bCB=y = 0:05), and Banks� deposit ratio
(d=y = 0:2142), respectively.

5. Policy parameter stability ranges
For numerical solution of ARGEMmy using Dynare I wrote the model block us-
ing the nonlinear equations and let Dynare calculate the loglinear approximations.
In this section I report individual policy parameter ranges that, starting from a
baseline calibration of these parameters, guaranteed the Blanchard-Kahn stability
conditions. For the remaining parameters I used calibrations which in section 6
constitute the prior mean of the estimated parameters. In order to satisfy the
Blanchard-Kahn stability conditions it was necessary to introduce some forward-
lookingness either in the policy rules or elsewhere. Although other variants involv-
ing Central Bank policy rules were available, the one I adopted was to assume that
the tax collection process is a forward-looking AR(1) (i.e. with a persistence para-
meter greater than 1), as seen previously. This can be interpreted as representing
a (lump sum) tax collection policy that is front loaded and geared to obtaining
�scal solvency. To avoid unnecessary complications, the persistence parameter in
this equation was calibrated (�t = 1:6) and the equation was not shocked.
All variants of the Central Bank policy rules satis�ed the Blanchard-Kahn con-

ditions for a baseline set of calibrated policy parameters. To get an idea of how
much the coe¢ cients could depart from the baseline level, I performed a sensitivity
analysis for the nine policy rule coe¢ cients. Starting from a baseline calibration for
the coe¢ cients in the two policy feedback rules I looked for the largest connected
intervals (to one decimal in the vicinity of zero and to one digit otherwise) within
which each of the coe¢ cients could be moved individually (and leaving the rest at
the baseline value) without altering the Blanchard-Kahn conditions for existence
and determinacy of model solution. I didn�t check for: 1) parameter values above
10, 2) negative values for the inertial parameters, or 3) negative values for the
next two parameters in the interest rate feedback rule (in�ation and GDP). The
baseline values of the policy coe¢ cients in the simple policy feedback rules were
the following, where I repeat the policy rules for the reader�s convenience:
Interest rate feedback rule:
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h0 h1 h2 h3 h4
0:5 1:5 1:2 �0:6 �0:4

1 + it = �
TR (1 + it�1)

h0

 e�Cte�Tt
!h1 �

yt
y

�h2 �ettbt=yt

TBT

�h3 �et�1tbt�1=yt�1

TBT

�h4
Nominal depreciation feedback rule:

k0 k1 k2 k3 k4 k5
0:5 �1:5 �1:2 �1:5 �0:5 1:5

�t = �
FXI (�t�1)

k0

 e�Cte�Tt
!k1 �

yt
y

�k2 �ettbt=yt

TBT

�k3 �et�1tbt�1=yt�1

TBT

�k4
�
�
etr

�CB
t =yt

CBT

�k5
exp("�t )

Table 1 shows the stability results. Both of the inertial coe¢ cient intervals of
stability were quite wide around zero, both going into high superinertial levels. In
the case of the interest rate rule, there were no upper bounds (up to 10) for the
reactions to GDP, and the parameter on the contemporary trade balance to GDP
ratio had to be negative. The �Taylor Principle�did not hold, for the coe¢ cient on
in�ation could go down to 0 without impairing stability. In the case of the second
feedback rule, there were no upper or lower bounds for the response to in�ation,
GDP, or the contemporary trade balance to GDP ratio. The coe¢ cient on the
international reserves to GDP ratio k5, only had to be outside of a small interval
around zero. Because unity is included in the feasible intervals for h0 and k0, one
or both of the simple policy rules can be implemented as the feedback response
of the �rst di¤erence (in the interest rate or the depreciation rate) to the various
arguments on the r.h.s.

TABLE 1
Individual policy parameter stability ranges
Interest rate feedback rule:

h0 2 [0; 10]
h1 2 [0; 6]
h2 2 [0; 10]
h3 2 [�10;�0:5]
h4 2 [�0:5; 0:5]

Nominal depreciation feedback rule:
k0 2 [0; 10]
k1 2 [�10; 10]
k2 2 [�10; 10]
k3 2 [�10; 10]
k4 2 [�10; 3]
k5 =2 [�0:1; 0:2]

These approximate bounds proved to be useful for instructing Dynare to limit
the search for the estimated parameters.
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6. Bayesian estimation
In this section I show preliminary results on the Bayesian estimation of a subset of
the model parameters. As is well known, unlike GMM estimation, Bayesian esti-
mation is system-based. It �ts the solution of the DSGE model to a vector of time
series (An and Schorfheide (2007)). Also, like maximum likelihood estimation it is
based on the likelihood function generated by the DSGE model, but through prior
densities it also incorporates the additional information the researcher may have
(e.g. his expert opinion on how the model is supposed to behave). However, the
Bayesian estimation of DSGE models is plagued with pitfalls. Lack of identi�cation
of some of the parameters of interest is usual and is one of the most di¢ cult issues
to tackle (Canova (2007), Canova and Sala (2005), Iskrev (2007)). In countries
like Argentina there are additional di¢ culties related to lack of trustworthy data
series, structural breaks through frequent deep crises, changes of policy regimes,
etc. Although life is not easy for applied researchers in less developed countries,
Bayesian methods constitute an important venue for bridging some of the di¢ cul-
ties. However, the lack of identi�cation of a signi�cant subset of the parameters of
interest when the model is relatively large makes it almost mandatory to resort to
a mixed calibration/estimation strategy.
In this section I show results on the calibration/estimation of ARGEMmy using

Dynare/MATLAB. Since they pertain to the post-Convertibility era I use only 22
observations between 2002:3 and 2007:4 for 10 observable variables. The �rst
four are the quarter to quarter rates of growth of GDP, Private Absorption (i.e.,
Private Consumption plus Investment), Government current expenditures, and
Imports. These series are from the national accounts measured in 1993 prices.
The next three observable variables are the quarter to quarter rates of growth
of Deposits (Bank deposits subject to reserve requirements), and Cash (Bills and
Coins), and the Consumption MRER (in level). These are BCRA (Central Bank
of Argentina) series. The last three are the quarter to quarter in�ation rates
for domestic and imported goods and for wages. For the domestic and imported
prices I use the GDP and imports de�ators from the national accounts, and I
proxied wages by the remunerations re�ected in the pension system (Gross average
remunerations with accrued 13th annual remuneration -�aguinaldo�) because it is
much more representative than any existing wage series.
As soon as I increased the number of observable variables to more than just a

few I began to have problems in the initial search for the posterior mode with any
of the �rst �ve Dynare mode_compute options, including Sims�csminwel. The
sixth option, which unfortunately has very scant documentation (see DynareWiki
in the Dynare website), instead of using a standard optimization routine (Newton
type), uses a Monte Carlo optimization algorithm. It looks for a point in the
parameters space with high posterior density and a good covariance matrix to
be used by the jumping distribution in the second Metropolis Hastings process.
It uses a MH algorithm with a starting diagonal covariance matrix to repeatedly
update the posterior covariance matrix, the posterior mean and the posterior mode
estimates through Metropolis Hastings draws. The number of simulations and the
number of times the process is repeated can be established through options speci�c
to the �mode_compute=6�option. Another advantage of this option is that it also
tunes the scale factor for the jumping distribution used in the second (and usual)
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Metropolis Hastings algorithm so that the acceptance ratio is around one third.
This option proved to be extremely helpful. However, even with this option

increasing the number of observable series used and the number of parameters to
be estimated was not an easy task. There were often warning signs indicating a
poorly conditioned Hessian matrix or an insu¢ ciently large support of the weight-
ing density for the calculation of the Modi�ed Harmonic Mean estimate (for the
marginal density of the data conditional on the model). Such di¢ culties, probably
related to lack of identi�cation or poor identi�cation of some of the parameters
and possibly problems with some of my data, led me to reduce the number of
parameters I had initially set out to estimate as well as the number of observable
series I had initially included in my data �le.
It is quite clear that the exchange rate remained a central concern for monetary

policy in Argentina in the post-Convertibility period. Although the dollar exchange
rate is the most visible, the monetary authorities pay attention to the Consumption
MRER. A preliminary estimation compared the model where the Central Bank
uses the two feedback rules to the model where it uses only the foreign exchange
intervention feedback rule and an autorregresive equation for the domestic value
of the Central Bank�s international reserves. The second model systematically
generated a signi�cantly higher marginal data density conditional on the model.
Hence, below I only show the results from the second model.
The estimation process was iterative. After making a preliminary exploration

of the parameter space I decided on a set of prior means for the structural pa-
rameters and performed a second or third estimation after correcting part of the
discrepancies between the prior and estimated posterior means of 1) the standard
errors of the shocks, 2) the corresponding persistence parameters (when these ex-
isted and where estimated), and 3) the feedback rule parameters (the ki). The
fact that these parameters do not a¤ect the model�s NSS made this easier (than
also correcting the priors for the main structural parameters). The assumptions
on priors and some of the information produced on the posteriors and are in Ta-
ble 2 below. And some of the voluminous additional Dynare output is shown in
Appendix 6.
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TABLE 2
ESTIMATION RESULTS

Log data density is 134.624146

Parameters
prior mean post. mean        confidence interval prior pstdev

k_0 0.20 ­0.1657 ­0.4853 0.0736 norm 2.000
k_1 ­2.50 ­1.6218 ­2.9543 ­0.6590 norm 4.500
k_2 ­0.50 ­0.3903 ­0.6251 ­0.0985 norm 2.000
k_3 ­0.60 0.0026 ­0.0002 0.0056 norm 1.000
k_4 ­0.50 0.0018 ­0.0013 0.0047 norm 1.000
k_5 0.15 0.0300 ­0.1125 0.2004 norm 1.000
thetaN 1.30 1.1754 1.1477 1.2011 norm 3.000
thetaC 0.70 0.9895 0.8425 1.1286 norm 2.000
bD 0.89 0.8903 0.8774 0.9044 beta 0.050
bA 0.06 0.0729 0.0634 0.0792 beta 0.030
xi 0.85 0.8091 0.7979 0.8230 beta 0.040
psi 12.00 7.3116 4.6179 10.2944 norm 24.000
alphaD 0.70 0.6133 0.5889 0.6299 beta 0.100
alphaN 0.70 0.5889 0.5617 0.6270 beta 0.100
alphaW 0.70 0.5808 0.5559 0.6042 beta 0.100
alpha_z 0.01 0.0151 0.0119 0.0175 beta 0.015
rhoz 0.85 0.6733 0.6587 0.6863 beta 0.100
rhozH 0.60 0.5283 0.5150 0.5501 beta 0.100
rhoEpsilon 0.70 0.6563 0.6322 0.6820 beta 0.100
rhoVarsigma 0.55 0.5951 0.5680 0.6298 beta 0.100
rhozA 0.20 0.2270 0.1854 0.2579 beta 0.100
rhopStar 0.83 0.8169 0.8006 0.8318 beta 0.100
rhoPiStarN 0.65 0.5981 0.5833 0.6140 beta 0.100
rhoiStar 0.72 0.7275 0.7080 0.7489 beta 0.100
rhoPhiStarB 0.50 0.2790 0.2608 0.2904 beta 0.080
rhoPhiStarG 0.25 0.2733 0.2580 0.2881 beta 0.080
rhoMuzStar 0.50 0.5226 0.5025 0.5383 beta 0.090
rhog 0.80 0.8196 0.7992 0.8377 beta 0.060

Standard deviation of shocks
prior mean post. mean        confidence interval prior pstdev

eps_zC 0.250 0.1445 0.0975 0.1886 invg Inf
eps_zH 0.600 0.6980 0.6448 0.7835 invg 0.2
eps_epsilon 0.200 0.3412 0.2179 0.4669 invg Inf
eps_varsigma 0.040 0.0845 0.0109 0.1573 invg Inf
eps_zA 0.080 0.0643 0.0185 0.1196 invg Inf
eps_pStar 0.150 0.2416 0.1629 0.3189 invg Inf
eps_piStarN 0.100 0.0925 0.0471 0.1391 invg Inf
eps_iStar 0.400 0.3690 0.2974 0.4250 invg 0.2
eps_phiStarB 0.150 0.1763 0.1299 0.2211 invg Inf
eps_phiStarG 0.050 0.0553 0.0112 0.1213 invg Inf
eps_muzStar 0.100 0.0656 0.0378 0.0918 invg Inf
eps_g 0.100 0.1267 0.0951 0.1575 invg Inf
eps_varepsilonz 0.080 0.0818 0.0600 0.1032 invg Inf
eps_varepsilondelta 0.100 0.0519 0.0244 0.0801 invg Inf

7. Optimal Monetary and Exchange rate Policy under Commitment
7.1. The matrix system for a linear quadratic optimal control framework
For the study of optimal policy rules I leave out the two equations that represent the
simple policy rules and express the rest of ARGEMmy (excluding the autoregressive
processes for the disturbance variables Zt) in the following matrix format:�

B00
11 B00

12

B00
21 B00

22

� �
Vt
Yt

�
=

�
0 0
A0021 A0022

�
Et

�
Vt+1
Yt+1

�
+

�
C0011 C0012
C0021 C0022

� �
Vt�1
Yt�1

�
+

�
0
F 22

�
Etut+1 �

�
F 11
F 12

�
ut

+

�
F 01
F 02

�
ut�1 +

�
J0011 J0012
J0021 0

� �
Zt
Zt�1

�
�
�
D00
1 0
0 D00

2

� �
{Vt+1
0

�
:
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Although I use the same notation for the main matrices (A0; B0; C0) as in (102)
for simplicity, they are of smaller dimension since they leave out the �rst two rows
and columns (the latter become matrices F 2, F 1, F 0). As before, the �rst block
row includes all static equations and all dynamic equations that do not include
forward-looking terms, and the second block row includes the remaining equations,
i.e., those that include forward-looking terms. Vector Vt is the lower part of vector
Xt used in section 3:

Xt =

�
ut
Vt

�
;

where ut is the vector of policy instruments. As in section 3, I normalized the
equation coe¢ cients so that the main diagonal of B00 is made up of ones. More
compactly, the system is:

B00dt = A00Etdt+1+C
00dt�1+F

2Etut+1�F 1ut+F 0ut�1+J00 eZt�D00{dt+1; (108)

where

dt =

�
Vt
Yt

�
; eZt = � Zt

Zt�1

�
; {dt =

�
{Vt
0

�
A00 =

�
0 0
A0021 A0022

�
;

B00 =

�
B00
11 B00

12

B00
21 B00

22

�
; C00 =

�
C0011 C0012
C0021 C0022

�
; D00 =

�
D00
1 0
0 D00

2

�
;

J0 =

�
J0011 J0012
J0021 0

�
=

�
J001
J002

�
; F 0 =

�
F 01
F 02

�
; F 1 =

�
F 11
F 12

�
; F 2 =

�
0
F 22

�
:

I now eliminate the null columns of matrix C00 for exactly the same reasons
as in section 3. De�ne selector matrices S�V and S

�
Y that select only the elements

of Vt and Yt that appear lagged in the reduced system. Correspondingly, de�ne
new, lower dimensional, vectors V t = S�V Vt�1 and Y t = S�Y Yt�1 that eliminate all
lagged variables and de�ne matrices C

�
ji that have the same non-zero elements as

matrices Cij but leave out the columns of zeros:

�
C
�
11 C

�
12

C
�
21 C

�
22

�
=

�
C0011 C0012
C0021 C0022

� �
S�0V 0
0 S�0Y

�
:

As it turns out, Y t has the same three elements as before after eliminating the
simple policy rules, and hence S�Y = SY , but S�V now selects only 30 of the 54
variables in Vt (because btbt�1 and byt�1 only appeared in the simple policy rules and
nowhere else in the original system). I also de�ne the vector of lagged instrument
variables ut = ut�1. Hence, I have the following matrix system:24 ut+1

V t+1

Y t+1

35 =
24 0 0
S�V 0
0 SY

35� Vt
Yt

�
+

24 I2�2
0
0

35ut;
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0 0
A0021 A0022

�
Et

�
Vt+1
Yt+1

�
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�
B00
11 B00

12

B00
21 B00

22

� �
Vt
Yt

�

�
�
F 01 C

�
11 C

�
12

F 02 C
�
21 C

�
22

�24 ut
V t

Y t

35+ � F 11
F 12

�
ut �

�
0
F 22

�
Etut+1

�
�
J001
J002

� eZt + � D00
1 0
0 D00

2

� �
{Vt+1
0

�
:

These equations can be expressed as:

kt+1 = S� edt + I0ut (109)

A00Et edt+1 = B00 edt � C
�
kt + F 1ut � F 2Etut+1 � J00 eZt +D00{dt+1;

where

kt =

24 ut
V t

Y t

35 ; edt = � VtYt
�
; I0 =

24 I2�2
030�2
03�2

35 ;
C
�
=

�
F 01 C

�
11 C

�
12

F 02 C
�
21 C

�
22

�
; S� =

24 02�54 02�12
S�V 030�12
03�54 SY

35 :

As before, the exogenous stochastic processes are given by (105). Stacking these
with the �rst equation in (109) yields the constraints the policymaker faces:

ekt+1 = cMekt + bS edt + bIut + {�t+1 (110)

A00Et edt+1 = B00 edt � bCekt + F 1ut � F 2Etut+1 +D00{dt+1

where

ekt =

� eZt
kt

�
; bI = � 024�2

I0

�
; bC = � J00 C

� �
cM =

� fM 024�35
035�24 035�35

�
; bS = � 024�66

S�

�
; {�t =

� e{t
035�1

�
:

Below I also use an even more compact expression:

eAEtst+1 = eBst + b{�t+1; (111)

where

st =

24 ektedt
ut

35 ; b{�t = � {�t
D00{dt

�
(112)

eA =

�
I59�59 0 0
0 A00 F 2

�
; eB = " cM bS bI

� bC B00 F 1

#
.
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7.2. Linear quadratic optimal control under full information and commitment
I assume that the Central Bank and the private sector have full information. The
Central Bank minimizes an intertemporal loss function at time t = 0:

L0 = E0

1X
t=0

�t
1

2
Lt, (113)

where (twice) the period loss function is

Lt = !�

�be�Ct �2 + !y (byt)2 + !tb

�
tbbrt�2 + !i

�bit�2 + !�

�b�t�2
+!�i

�
�bit�2 + !�i

�
�b�t�2 + !�e (�bet)2 ;

subject to constraints (110) and initial conditions for the predetermined variables
(k0 = k�). This period loss function is quite general, and can include costs for
deviations of year on year consumption in�ation, GDP, and the trade balance (to
GDP) ratio from their non-stochastic steady state values, costs for deviations of
each of the two operational targets from their non-stochastic steady state values,
and also costs for changes in the operational targets and/or the RER. The cost for
interest rate deviations from the steady state can re�ect a desire to stay away from
the zero lower bound. The cost for deviations of the rate of nominal depreciation is
included basically for the analysis of its e¤ects. And the cost for changes in the RER
can re�ect a desire to maintain an undervalued currency (as some LDCs apparently
do) to help domestic �rms compete against foreign �rms (in international markets
as well as in the domestic market) or, quite the contrary, a desire to maintain an
overvalued currency (as some LDCs used to do during the runup to elections in
order to gain votes by allowing the population to live beyond its means).
The vector of target variables is

� t =
h bit�1 b�t�1 bet�1 byt bet be�Ct tbbrt bit b�t i0 : (114)

It includes all the variables that (in this paper) the Central Bank can potentially
be interested in including in its period loss function. It can be expressed in terms
of the endogenous variables as:

� t =

24 03�24 SkT 03�66 03�2
04�24 04�35 SdT 04�2
02�24 02�35 02�66 I2�2

35
2664
eZt
ktedt
ut

3775 � Tst: (115)

SkT is a selector matrix that selects the �rst (bit�1), second (b�t�1) and fourteenth
(bet�1) elements of kt and SdT is the selector matrix that selects the 11th (byt), 24th
(bet), 29th (be�Ct ) and 34th (tbbrt) elements of edt.

Lt can be expressed in matrix form as:

Lt = � 0t

0� t;
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where


0 =

26666666666664

!�i 0 0 0 0 0 0 �!�i 0
0 !�� 0 0 0 0 0 0 �!��
0 0 !�e 0 �!�e 0 0 0 0
0 0 0 !y 0 0 0 0 0
0 0 �!�e 0 !e + !�e 0 0 0 0
0 0 0 0 0 !tb 0 0 0
0 0 0 0 0 0 !� 0 0

�!�i 0 0 0 0 0 0 !i + !�i 0
0 �!�� 0 0 0 0 0 0 !� + !��

37777777777775
:

In terms of the complete set of endogenous variables, (twice) the period loss
function is:

Lt = � 0t

0� t = s0tT

0
0Tst � s0t
st; (116)

where 
 can be partitioned conformably to st in (112)


 =

24 
kk 
kd 
ku

dk 
dd 
du

uk 
ud 
uu

35 : (117)

Hence, the Central Bank�s problem is to choose a sequence of optimal controls
futgt=0;1::: that minimizes

E0

1X
t=0

�t
1

2
s0t
st,

subject to (111) for all t and initial the conditions ek0 = k�. I assume that the
Central Bank and the private sector always have the same information set. Since
the commitment solution is certainty equivalent, one can think of the Central
Bank�s policy problem as deterministic. Hence, the Lagrangian function can be
expressed as:

E0

( 1X
t=0

�
�t
1

2
s0t
st + �t�0t+1

� eBst � eAst+1��� ��1�k00

�ek0 � k�
�)

; (118)

where the vector of Lagrange multipliers is �t+1 � �t�t+1, where

�t+1 =

�
�kt+1
�dt

�
:

Following Svensson and Woodford (2003), the dating of the multipliers re�ects the
fact that the constraints for the predetermined variables depend on information at
t+1 whereas the constraints for the jump variables, being in expectations, depend
on the information available in period t. Now note that if we de�ne a �ctitious
vector of multipliers for period -1 which is equal to 0:

�d�1 = 0; (119)



43

the following equality holds (for any arbitrary d�, u�):

�00
eA (s0 � s�) =

�
�k00 �d0�1

� � I 0 0
0 A0 F 2

�24 ek0 � k�ed0 � d�

u0 � u�

35 = �k00

�ek0 � k�
�
:

Hence, I can use a more symmetric notation writing (118) as:

E0

( 1X
t=0

�t
�
1

2
s0t
st + �0t+1

� eBst � eAst+1��� ��1�00
eA (s0 � s�)

)
: (120)

The �rst order conditions for �t and st for t = 0; 1; :::; are:

eAst+1 = eBst (121)eB0�t+1 = ��1 eA0�t � 
st: (122)

(Note that the introduction of �d�1 (=0) makes the second of these equations adopt
a recursive form. Without it, that equation would have a di¤erent form for t = 0:

eB0�t+1 = �
st; if t = 0eB0�t+1 = ��1 eA0�t � 
st; if t > 0:

I could, equivalently, leave the Lagrangian as in (118) and introduce �d�1 (=0) at
this stage to make these �rst order conditions recursive.) The fact that, under
commitment, the Central Bank behaves di¤erently in the �rst period (when it op-
timizes) from all the subsequent periods (when it follows the initial optimization)
should be interpreted as the Central Bank exploiting the private sector�s expecta-
tions only in the initial period. The fact that the Central Bank has an incentive
to exploit the private sector�s expectations each period (not just the initial one)
implies that the commitment policy is time inconsistent (Kydland and Prescott
(1977)). Nevertheless, there is no a priori reason for not assuming that the Cen-
tral Bank may behave in a time inconsistent way. The main reason for using this
assumption in this paper, however, is simply that the commitment policy solution
is simpler to derive than, say, the time consistent discretionary policy in which the
Central Bank optimizes each period.

Stacking (121)-(122) and reintroducing the stochastic shocks, gives:

" eA 0

0 eB0

#
Et

�
st+1
�t+1

�
=

" eB 0

�
 ��1 eA0
# �

st
�t

�
+

� b{�t+1
0

�
;
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and using (117) and the de�nitions of eA and eB in (112) this becomes:2666664
I 0 0 0 0
0 A00 F 2 0 0

0 0 0 cM 0 � bC 0
0 0 0 bS 0 B000

0 0 0 bI 0 F 10

3777775

2666664
ekt+1
Et edt+1
Etut+1
Et�

k
t+1

�dt

3777775

=

266664
cM bS bI 0 0

� bC B00 F 1 0 0
�
kk �
kd �
ku ��1I 0
�
dk �
dd �
du 0 ��1A000

�
uk �
ud �
u 0 ��1F 20

377775
2666664
ektedt
ut
�kt
�dt�1

3777775+
266664

{�t+1
D00{dt+1
0
0
0

377775 :

Under commitment, the Lagrange multipliers that correspond to the non-predetermined
variables �dt are predetermined (Currie and Levine (1993), Backus and Dri¢ l
(1986)) and their optimal values re�ect the policy�s history-dependence. In order
to apply the generalized Schur decomposition, I change the order of the vectors
so that the those with predetermined variables are �rst. For this I can simply
interchange the second and �fth (matrix) columns in the square matrices above,
obtaining:2666664

I 0 0 0 0
0 0 F 2 0 A00

0 � bC 0 0 cM 0 0

0 B000 0 bS 0 0

0 F 10 0 bI 0 0

3777775

2666664
ekt+1
�dt

Etut+1
Et�

k
t+1

Et edt+1

3777775

=

266664
cM 0 bI 0 bS
� bC 0 F 1 0 B00

�
kk 0 �
ku ��1I �
kd
�
dk ��1A000 �
du 0 �
dd
�
uk ��1F 20 �
u 0 �
ud

377775
2666664
ekt
�dt�1
ut
�ktedt

3777775+
266664

{�t+1
D00{dt+1
0
0
0

377775 :

or, with obvious notation for the matrices:

AoptWt+1 = BoptWt + {optt+1: (123)

Wt =

2666664
ekt
�dt�1
ut
�ktedt

3777775 =
" bktbdt

#
; {optt =

266664
{�t

D00{dt
0
0
0

377775
bkt =

� ekt
�dt�1

�
; bdt =

24 ut
�ktedt
35 :
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Note that there are initial conditions for the predetermined variables k0 = k� and
�d�1 = 0. Applying the QZ decomposition and reintroducing the innovations (where
those on the Lagrange multipliers are null -see Backus and Dri¢ ll (1986)), gives
the following results:

bkt+1 = Goptbkt + � {�t+10
�

(124)

bdt = Koptbkt +
24 0

0
D00{dt+1

35 ;
which can be expanded to:ekt+1 = Gopt

kk
ekt +Gopt

kl �
d
t�1 + {�t+1 (125)

�dt = Gopt
lk
ekt +Gopt

ll �
d
t�1; (126)

ut = Kopt
uk
ekt +Kopt

ul �
d
t�1 (127)

�kt = Kopt
kk
ekt +Kopt

kl �
d
t�1 (128)edt = Kopt

dk
ekt +Kopt

dl �
d
t�1 +D0{dt+1: (129)

(127) gives the optimal policy under commitment in terms of the (endogenous and
exogenous) state variables. And (126) gives the law of motion for the predetermined
Lagrange multipliers. In t = 0, when the Central Bank optimizes and commits, it
sets its instruments according to u0 = Kopt

uk
ek0, since �d�1 = 0. In t = 1, however,

it must stick to its commitment by taking (126) into account for the value of the
predetermined multipliers:

u1 = Kopt
uk
ek1 +Kopt

ul G
opt
lk
ek0

More generally, using (126) and �d�1 = 0, I can eliminate �dt�1 from (127) and
derive the optimal policy at t as an integral feedback from the model predetermined
variables and their past history since the time of commitment:

ut = Kopt
uk
ekt +Kopt

ul

t�1X
j=0

�
Gopt
ll

�j �
Gopt
lk
ekt�1�j� :

This formulation emphasizes the history dependence created by the commitment
in t = 0 to follow (127) forever. The matrices

Kopt
uk ; Kopt

ul G
opt
lk ; Kopt

ul G
opt
ll G

opt
lk ; Kopt

ul

�
Gopt
ll

�2
Gopt
lk ; ::: (130)

give the responses of the instruments to current predetermined variables, to lagged
values of the predetermined variables, to the twice lagged values of the predeter-
mined variables, etc., as new periods of time elapse starting from the commitment
date. Also, note that since

ekt = � eZt
kt

�
=

2664
eZt
ut
V t

Y t

3775 =
266664

Zt
Zt�1
ut�1
S�V Vt�1
S�Y Yt�1

377775 ;
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the Central Bank is responding to current and lagged values of the exogenous
disturbances, to lagged values of the control variables, and to lagged values of the
subset of the rest of the endogenous variables that appear lagged in the model
equations.
Using (127) and (129) I can express the model�s endogenous variables in terms

of the control system (123) predetermined variables:

st =

24 ektedt
ut

35 =
24 I59�59 059�66

Kopt
dk Kopt

dl

Kopt
uk Kopt

ul

35� ekt
�dt�1

�
� Kbkt;

and hence express the period loss function in terms of the latter variables:

Lt = � 0t

0� t = s0t
st =

bk0tK 0

Kbkt � bk0t
Kbkt:

Hence, the Central Bank loss (113) is:

L0 = E0

1X
t=0

�t
1

2
bk0t
Kbkt:

Using the law of iterated expectations, I write this loss function recursively:

Lt = Et

1X
�=t

��
1

2
bk0�
Kbk� = bk00
Kbk0 + �Et

 
Et+1

1X
�=t

��
1

2
bk0�+1
Kbk�+1

!
(131)

= bk00
Kbk0 + �EtLt+1:

and (using the usual guess and verify procedure) guess that the loss function has
the form

Lt = bk0tV bkt + v; (132)

where V and v are a matrix and a vector to be determined. Using (124) and (132)
in (131), gives:

bk0tV bkt + v = bkt
Kbkt + �Et

�bk0t+1V bkt+1 + v
�

= bkt
Kbkt + �Et

��bk0tGopt0 +
�
{�0t+1 0

��
V

�
Goptbkt + � {�t+10

���
+ �v

= bkt �
K + �Gopt0V Gopt
� bkt + Et{�0t+1Vkk{�t+1 + �v;

where I partitioned V conformably to the two components of bkt: Hence, the fol-
lowing equalities must be true:

V = 
K + �Gopt0V Gopt; (133)

v =
�

1� �
Et{�0t+1Vkk{�t+1 =

�

1� �
trace (Vkk�) ;

where � is the conditional covariance matrix of the shocks to the exogenous au-
torregressive processes {�t+1:

� � Et{�t+1{�0t+1 =
�
Ete{t+1e{0t+1 024�35
035�24 035�35

�
�
� e� 0
0 0

�
: (134)
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Therefore, the Central Bank loss as of period t = 0 is:

L0 = bk00V bk0 + �

1� �
trace (Vkk�)

= ek00Vkkek0 + �

1� �
trace (Vkk�)

= trace

�
Vkk

�ek0ek00 + �

1� �
�

��
;

where the second equality uses (119).
Hence, under commitment the Central Bank�s expected loss is composed of two

terms. The �rst is related to the initial conditions for the disturbance variables eZ0
and the non-disturbance variables k0, and the second is related to the stochastic
shocks. In the numerical exercises below I calculate both. First, I assume that
the initial conditions are the NSS. Since the variables are in log-deviations from
these values, the �rst loss component is zero, and the loss reduces to the second
component:

L0 =
�

1� �
trace

�
Vzze�� ;

where Vzz is the upper left block of Vkk. This is called Loss0 in the tables below.
For the loss when at the time of commitment the economy is not in the NSS (Loss1
in the tables below), I construct a stylized stag�ationary scenario where most of
the disturbance state variables and all of the non-disturbance variables are either
1% above or 1% below the NSS (Loss1 in the tables below). The exact pattern is
the following:

gt zCt zHt �t zAt & t ���Nt i��t ���Bt ���Gt �z��t p��Xt

+ 0 0 � � 0 0 + + + 0 �

gt�1 zCt�1 zHt�1 �t�1 zAt�1 & t�1 ���Nt�1 i��t�1 ���Bt�1 ���Gt�1 �z��t�1 p��Xt�1

+ 0 0 � � 0 0 + + + 0 �

it�1 �t�1 r�CBt�1 bCBt�1 iGt�1 b�Gt�1 iBt�1 pCt�1 �zt�1 �Wt�1 �t�1 �Nt�1
+ + � � + + � + � + + +

z�t�1 et�1 �Ct�1 wt�1 pNt�1 �1;t�1 �2;t�1 �
C
1;t�1 �C2;t�1 �1;t�1 �2;t�1 �z1;t�1

+ � + � + + + + + + + �
�z2;t�1 e1;t�1 e2;t�1 e3;t�1 p��X0;t�1 p��X1;t�1 p��X2;t�1 p��X3;t�1 ct�1 b�Bt�1 iLt�1
� � � � � � � � � � �

In the FER and PER regimes, of course, r�CBt�1 and b
CB
t�1 respectively, disappear.

The matrix V is obtained simply iterating on the Lyapunov equation (133)
starting with V = I on the r.h.s. Convergence is guaranteed by the fact that
matrix Gopt has all its eigenvalues inside the unit disk.
In the next subsection optimal policy rules and CB losses are also calculated for

two �extreme�cases of ARGEMmy: those that correspond to a �oating exchange
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rate (FER) regime and to a pegged exchange rate (PER) regime (see section 2.7
above). These are particular cases of ARGEMmy. In the �rst, the vector ut
reduces to bit (and, since there is no CB intervention in the FX market, r�CBt is
transformed into a parameter that is kept at the same steady state value as in the
general model). In the second the vector ut reduces to b�t (and, since there is no
CB intervention in the money market, bCBt is transformed into a parameter that
is kept at the same steady state value as in the general model). Since there is a
change in the ordering of the target variables (according to what subvectors they
belong to), care must be taken to make the corresponding changes in matrices 
0

and T .

7.3. Numerical results on optimal policy rules and losses
For the numerical exercises in this section I used the parameter values estimated
in section 6, except for the case of the Government foreign debt interest elasticity
which I increased to "G = 1 (from 0.8334) in order to amplify the neighborhood
around the parameters that are modi�ed in the exercises (including the weights in
the loss function) that satisfy the Blanchard-Kahn conditions for the MER regime.
This has the sole e¤ect of changing the values of the parameters �G1 and �

G
2 .

Tables 3 below show the two measures of losses corresponding to the optimal
controls for the MER (interest rate and rate of nominal depreciation), FER (interest
rate), and PER regimes (rate of nominal depreciation), for various sets of weights !j
in the CB�s loss function (or CB styles for brevity). For each CB style, the loss that
is lowest is in bold and the second lowest loss is in italics. Tables 3.A and 3B show
CB styles in which the CB is neutral between the three gaps (!� = !y = !tb = 1)
and styles in which it is more averse (!j = 2) to one of the gaps. In each of these
cases the CB may or may not have an aversion to changing the interest rate or the
rate of nominal depreciation. Table 3.C considers CB styles in which the CB is
much more averse (!j = 5) to one of the three gaps. Table 3.D adresses the special
cases of styles in which the CB has a preference for not changing the MRER or
for maintaining i or � away from their NSS values. Table 3.E takes CB style D (in
which the CB has some aversion to changing both the interest rate and the rate
of nominal depreciation) and considers changes in some of the model parameters:
the coe¢ cients for nominal rigidity (�W ; �D; �N), the interest elasticities of the
bank risk premium ("B) and cash demand ("M), and the elasticities of substitution
between imported goods (�N) and between labor types ( ).
It is noteworthy that in all the cases shown (indeed, in all the cases I computed

and are not shown), the MER achieves a substantially lower loss for both measures
of loss. This includes cases in which the CB has no misgivings about changing
its instrument(s) and cases in which it does, cases in which the CB is more (and
substantially more) averse to a particular gap, cases in which there is lower nominal
rigidity for wages, domestic goods prices and/or imported goods prices, and cases
in which there are lower elasticities of substitution for imported goods or labor
types. Which regime has the second lowest loss depends on its style and the
type of loss. The PER regime almost always achieves the second lowest Loss0.
However, in general the FER regime dominates the PER regime in the case of
Loss1 (i.e., total loss). One must bear in mind that Loss1 is heavily dependent
on the stag�ationary initial situation assumed for this exercise. A di¤erent initial
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condition could reverse the ordering. Of course, it is possible that a CB style
and especially an initial situation can be constructed in which the MER does not
dominate. But the styles and initial scenario considered here were not constructed
with the intention of favoring the MER regime.

TABLE 3.A
Losses for alternative CB styles and policy regimes
Weights on loss function for di¤erent Central Bank styles

BASELINE INFLATION AWARE
A B C D E F G H

!�i 0 0.5 0 0.5 0 0.5 0 0.5
!�� 0 0 0.5 0.5 0 0 0.5 0.5
!�e 0 0 0 0 0 0 0 0
!y 1 1 1 1 1 1 1 1
!e 0 0 0 0 0 0 0 0
!tb 1 1 1 1 1 1 1 1
!� 1 1 1 1 2 2 2 2
!i 0 0 0 0 0 0 0 0
!� 0 0 0 0 0 0 0 0
Loss0 (thousands)
MER (2 policy rules)

10.37 80.71 48.35 74.45 12.61 85.16 50.54 76.53
FER (Float)

5122.2 5122.3 5129.4 5129.5 5160.0 5160.1 5163.9 5164.0
PER (Peg)

5017.2 5017.3 5020.7 5020.8 5030.9 5031.0 5034.3 5034.5
Loss1 (thousands)
MER (2 policy rules)

220.37 2261.1 1596.3 2217.0 271.41 2377.4 1667.8 2281.7
FER (Float)

51032 51032 51116 51116 51455 51455 51606 51606
PER (Peg)

100510 100510 100680 100680 100810 100810 101070 101070

It is somewhat surprising that the total absence of nominal rigidity or the
reduction in nominal rigidity for two of the three Phillips equations (cases D1-D4)
substantially increases the losses for the MER regime.12 In contrast, the elimination
or reduction of nominal rigidity increases Loss0 and diminishes Loss1 for the FER
regime and (almost always) diminishes both losses for the PER regime.
A reduction in the interest elasticity of banks�risk premium function (case D5)

reduces both losses for all three regimes, and a reduction in the interest elasticity of
households�cash demand function (case D6) slightly increases both losses for the
MER and PER regimes while it slightly diminishes both losses for the FER regime.
An increase in the elasticity of substitution for imported goods (case D7) reduces

12Although I was able to reduce all three parameters to zero, reducing only two of them led
to problems with the Blanchard-Kahn coditions in the MER regime, so I avoided reductions to
zero in the case of partial reductions.



50

Loss0 and very substantially reduces Loss1for all three regimes. Finally, an increase
in the elasticity of substitution for labor types (case D8) reduces both losses for
the MER regime and slightly increases them for the FER and PER regimes.

TABLE 3.B
Losses for alternative CB styles and policy regimes
Weights on loss function for di¤erent Central Bank styles

OUTPUT AWARE TRADE BALANCE AWARE
I J K L M N O P

!�i 0 0.5 0 0.5 0 0.5 0 0.5
!�� 0 0 0.5 0.5 0 0 0.5 0.5
!�e 0 0 0 0 0 0 0 0
!y 2 2 2 2 1 1 1 1
!e 0 0 0 0 0 0 0 0
!tb 1 1 1 1 2 2 2 2
!� 1 1 1 1 1 1 1 1
!i 0 0 0 0 0 0 0 0
!� 0 0 0 0 0 0 0 0
Loss0 (thousands)
MER (2 policy rules)

27.35 85.36 49.24 76.19 10.38 62.81 48.18 65.09
FER (Float)

5123.7 5123.8 5130.7 5130.9 10104 10104 10130 10130
PER (Peg)

5017.8 5017.9 5021.2 5021.4 9981.1 9981.3 9988.5 9988.6
Loss1 (thousands)
MER (2 policy rules)

579.42 2364.0 1616.8 2258.2 220.42 1834.0 1591.9 1955.2
FER (Float)

51048 51048 51133 51133 100460 100460 100540 100540
PER (Peg)

100520 100520 100690 100690 199800 199800 199900 199900

Tables 4, 5 and 6 show the matrices Kopt
uk and K

opt
ul corresponding to the initial

period after optimization and various CB styles (cases A-P ). Each one of these
tables considers a speci�c policy regime. For each regime, it was veri�ed that any
proportional change in the weights has no e¤ect on the coe¢ cients in Kopt

uk and
compensating proportional changes in the coe¢ cients in Kopt

ul . Note that although
�dt�1 is of dimension 66 (in all three regimes), only the last 12 elements of this
vector (corresponding to the equations with expectational terms) are nonzero (and
hence are the only ones reported). Each column corresponds to the CB style that
appear in the upper part of the column and are de�ned as in Tables 3. The �rst
column(s) represents a baseline case in which the weights !y , !tb , !� are unity
and the rest are zero.
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TABLE 3.C
Losses for alternative CB styles and policy regimes
Weights on loss function for di¤erent Central Bank styles

More extreme preferences
D Q R S T U V

!�i 0.5 0.5 0.5 0.5 0.5 0.5 0.5
!�� 0.5 0.5 0.5 0.5 0.5 0.5 0.5
!�e 0 0 0 0 0 0 0
!y 1 1 5 1 1 10 1
!e 0 0 0 0 0 0 0
!tb 1 1 1 5 1 1 10
!� 1 5 1 1 10 1 1
!i 0 0 0 0 0 0 0
!� 0 0 0 0 0 0 0
Loss0 (thousands)
MER (2 policy rules)

74.45 82.79 80.86 57.48 92.42 87.35 54.37
FER (Float)

5129.5 5200.9 5134.6 24672 5236.2 5140.4 47913
PER (Peg)

5020.8 5055.8 5023.0 24767 5083.6 5025.4 49124
Loss1 (thousands)
MER (2 policy rules)

2217.0 2469.4 2366.6 1729.9 2757.1 2512.7 1633.5
FER (Float)

51116 52049 51184 243370 52382 51260 469900
PER (Peg)

100680 101520 100730 494270 101980 100790 977950

Note that when there is no preference for instrument inertia some of the coef-
�cients can be quite high. However, these coe¢ cients become much smaller when
there is a preference for instrument inertia. In the MER regime !�i = 0:5 is
su¢ cient to generate an autorregressive coe¢ cient for the interest rate of 0.5 and
!�� = 0:5 is su¢ cient to generate an autorregressive coe¢ cient for the rate of nom-
inal depreciation of 0.3. In the FER and PER regimes, however, a much higher
!�i or !�� is required to achieve such levels of autorregressiveness. For example,
in the FER regime !�i = 1000 generates an AR coe¢ cient of only 0.1 for the
interest rate, and in the PER regime !�� = 20 generates an AR coe¢ cient of 0.35
for the rate of nominal depreciation.13 This implies that the MER regime is more
naturally inclined to generate inertia in the use of the controls (as long as there is
some aversion to changing them) than the �corner�regimes. Also, when in the MER
regime there is some aversion to changing both controls, while the autorregressive
coe¢ cient for the interest rate is in the 0.35-0.4 range, the one corresponding to
the rate of nominal depreciation becomes highly negative (around -2.5).

13These results do not appear in the tables because these were constructed so as to be able to
compare regimes and such high omegas generate instability in the MER regime.
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TABLE 3.D
Losses for alternative CB styles and policy regimes
Weights on loss function for di¤erent Central Bank styles

Resistence to change in e and non-NSS values for i and �
D W X Y Z Y Y ZZ

!�i 0.5 0.5 0.5 0.5 0.5 0.5 0.5
!�� 0.5 0.5 0.5 0.5 0.5 0.5 0.5
!�e 0 1 5 0 0 0 0
!y 1 1 1 1 1 1 1
!e 0 0 0 0 0 0 0
!tb 1 1 1 1 1 1 1
!� 1 1 1 1 1 1 1
!i 0 0 0 1 5 0 0
!� 0 0 0 0 0 1 5
Loss0 (thousands)
MER (2 policy rules)

74.45 87.92 96.31 125.70 176.59 81.69 88.43
FER (Float)

5129.5 5140.9 5171.3 5130.3 5133.5 5136.0 5153.5
PER (Peg)

5020.8 5026.3 5043.6 5021.7 5025.1 5023.6 5031.9
Loss1 (thousands)
MER (2 policy rules)

2217.0 2576.4 2811.4 3397.3 4369.0 2418.6 2606.7
FER (Float)

51116 51212 51531 51119 51132 51204 51480
PER (Peg)

100680 100800 101210 100690 100710 100790 101110

8. Conclusion
This paper constructs an intermediate DSGE model with a banking system and a
Central Bank that uses two policy rules, calibrates/estimates it for the Argentinian
economy using Dynare, and uses it to analyze optimal policies under commitment.
The model is a simpli�cation of the larger DSGE model ARGEM (see Escudé
(20007)). However, ARGEMmy (as I call the simpler model) has most of the
fundamental structure of ARGEM, including 1) banks that are at the center of the
�nancial aspects of the model and generate the model�s uncovered interest parity
equation, 2) endogenous risk premiums for banks and the government when being
�nanced abroad, 3) a full-�edged �scal sector (with a minimal tax structure), 4)
growth introduced through a permanent productivity shock that is cointegrated
with its equivalent for the rest of the world, 5) the ability to model a policy regime
which uses two simultaneous policy rules which may or may not involve feedback:
one for the interest rate and another for the rate of nominal depreciation. Results
from a preliminary estimation of a subset of the model�s parameters are shown and
then used for the analysis of optimal monetary and exchange rate policies. The
log-linear model is put in a matrix form suitable for a linear-quadratic optimal
control framework under the assumption of commitment and full information. The
optimal policy rules and related CB loss are derived for the �managed exchange



53

rate�(MER) regime and for two �corner�regimes: a ��oating exchange rate�(FER)
regime and a �pegged exchange rate�(PER) regime. Sensitivities of the CB loss
are studied for various CB styles (preferences) and other model parameters that
measure nominal rigidities, elasticities of substitution, and interest elasticities for
the bank risk premium and for cash demand. For all the cases computed, the MER
regime achieves a substantially lower CB loss than either of the the two �corner�
regimes.

TABLE 3.E
Losses for alternative parameter values in CB style D

D D1 D2 D3 D4 D5 D6 D7 D8
�W 0.5808 0 0.5808 0.1 0.1 0.5808 0.5808 0.5808 0.5808
�D 0.6133 0 0.2 0.6133 0.2 0.6133 0.6133 0.6133 0.6133
�N 0.5889 0 0.1 0.1 0.5889 0.5889 0.5889 0.5889 0.5889
"B 1.1575 1.1575 1.1575 1.1575 1.1575 0.9 1.1575 1.1575 1.1575
"M 0.85 0.85 0.85 0.85 0.85 0.85 0.7 0.85 0.85
�N 1.1754 1.1754 1.1754 1.1754 1.1754 1.1754 1.1754 1.3 1.1754
 7.3116 7.3116 7.3116 7.3116 7.3116 7.3116 7.3116 7.3116 9.0
Loss0 (thousands)
MER (2 policy rules)

74.45 188.01 179.47 187.14 178.29 53.06 74.46 61.89 72.28
FER (Float)

5129.5 5160.5 5176.0 5132.8 5046.2 4944.0 5126.4 4984.8 5134.5
PER (Peg)

5020.8 5009.2 5025.3 5000.8 4978.0 4830.9 50232 4925.2 5023.8
Loss1 (thousands)
MER (2 policy rules)

2217.0 4242.5 4241.4 4316.6 4262.0 1747.1 2217.4 1062.7 2162.9
FER (Float)

51116 50720 51000 50595 4967.1 49206 51085 25813 51164
PER (Peg)

100680 99622 100110 99683 98991 96721 100690 48028 100750
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Optimal Policy Rules for a MER regime

Coefficients on non­disturbance state variables

­0.0036 0.0014 0.5098 ­0.176 ­0.0001 0 0.4089 ­0.0227

­0.9441 ­6.6518 ­1.3004 ­5.2117 ­12.9423 0.3364 ­3.0817 ­2.0873

2.4517 ­0.9557 0.0298 ­0.0452 0.0454 ­0.0265 0.0156 ­0.0156

­0.0001 0 0 0 0 0 0 0

­3.7949 1.4793 ­0.0461 0.0699 ­0.0703 0.0409 ­0.0242 0.0242

­3.7949 1.4793 ­0.0461 0.0699 ­0.0703 0.0409 ­0.0242 0.0242

­1.2474 0.4863 ­0.0152 0.023 ­0.0231 0.0135 ­0.008 0.008

12.4366 0.0607 0.2919 0.5539 1.4784 0.4337 0.3851 0.2901

2.1446 8.1183 2.8784 3.4041 14.6635 0.4619 4.2279 1.0882

­4.3468 2.0206 ­0.0371 ­0.0342 ­0.4836 ­0.0965 ­0.0358 ­0.0414

­7.6711 8.8121 1.637 5.6468 13.8732 ­0.1634 3.6589 2.3532

­0.198 ­2.5135 ­0.9701 ­0.8396 ­2.9287 ­0.1189 ­1.3971 ­0.1497

1.8452 ­0.6645 0.0709 ­0.0245 0.1388 0.0003 0.0672 ­0.0098

1.14 5.6754 0.905 4.9854 12.7265 ­0.2909 2.6363 2.1521

­12.0442 ­0.3051 ­0.1793 ­0.3616 ­1.0477 ­0.3103 ­0.2409 ­0.185

­3.6239 2.7997 0.8557 0.214 3.3303 ­0.109 1.2473 ­0.2006

­1.2539 ­4.6715 ­2.5495 ­0.443 ­11.2417 0.0954 ­3.6866 0.688

TABLE 4.1A
Optimal Policy Rules

A B C D
u t, V t , Y t

åz t?1
E

åe t?1
å̂

t?1
C

w t?1
åp t?1
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D

å̂
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åi t?1
B

åp t?1
C

åW t?1
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å̂
t?1
W

å̂
t?1
D

å̂
t?1
N

­6.2423 6.6717 2.9209 1.4474 3.4686 ­0.1414 4.4591 ­0.4571

4.2137 8.9129 6.3053 ­1.0723 33.7782 ­0.3367 8.8148 ­2.7738

­13.4383 ­0.5235 ­0.0778 ­0.188 ­0.5604 ­0.1686 ­0.1121 ­0.0927

­2.9559 ­0.3741 ­0.0135 ­0.0602 ­0.1383 ­0.0506 ­0.0261 ­0.0279

6.2622 ­6.5582 ­2.9256 ­1.4402 ­3.4664 0.1476 ­4.463 0.4609

­4.264 ­8.8629 ­6.3122 1.0769 ­33.8074 0.3396 ­8.8229 2.7777

­6.2423 6.6717 2.9209 1.4474 3.4686 ­0.1414 4.4591 ­0.4571

4.2137 8.9129 6.3053 ­1.0723 33.7782 ­0.3367 8.8148 ­2.7738

­7.6235 ­0.1394 1.7515 ­4.0684 ­10.3742 ­0.1649 1.5123 ­2.9453

11.2782 2.4174 3.6505 ­2.7177 32.6929 ­0.2107 4.6981 ­2.4989

­4.545 ­9.6137 ­6.8011 1.1566 ­36.4343 0.3632 ­9.5079 2.9919

1.8616 0.3696 ­5.4797 10.7555 ­0.4463 ­0.1255 ­3.5815 6.6866

­7.6235 ­0.1394 1.7515 ­4.0684 ­10.3742 ­0.1649 1.5123 ­2.9453

11.2782 2.4174 3.6505 ­2.7177 32.6929 ­0.2107 4.6981 ­2.4989

­4.545 ­9.6137 ­6.8011 1.1566 ­36.4343 0.3632 ­9.5079 2.9919

1.2171 2.8893 2.8506 0.4119 11.9742 ­0.1662 4.0169 ­0.7222

­1.2474 0.4863 ­0.0152 0.023 ­0.0231 0.0135 ­0.008 0.008

­0.6854 0.1622 0.0274 0.0345 0.0635 ­0.0141 0.0486 0.0064
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Coefficients on disturbance variables

0.5257 ­0.3924 0.1389 ­0.0236 0.5322 ­0.0359 0.1821 ­0.0514

0.5071 ­0.0832 0.2696 0.1965 0.668 0.0253 0.3563 0.0558

­0.4184 0.1522 ­0.0448 ­0.0348 ­0.1664 ­0.0101 ­0.0624 ­0.0095

4.2584 ­3.6613 ­1.2389 ­0.1797 ­5.2913 0.1519 ­1.8115 0.3739

­2.1807 ­8.4078 ­5.4995 0.399 ­27.3989 0.2829 ­7.7851 2.1664

­0.0358 0.0088 ­0.0004 0 ­0.0044 ­0.0011 ­0.0003 ­0.0001

3.3759 1.5295 3.6661 ­3.2152 5.4002 0.0126 3.388 ­2.5576

­16.5854 6.465 ­0.2015 0.3055 ­0.3071 0.179 ­0.1057 0.1059

­1.1346 0.4423 ­0.0138 0.0209 ­0.021 0.0122 ­0.0072 0.0072

­5.1775 2.0182 ­0.0629 0.0954 ­0.0959 0.0559 ­0.033 0.033

3.8109 ­1.4816 0.07 ­0.0282 0.1298 ­0.029 0.0609 0.0031

0.5184 ­0.2805 3.783 ­6.7956 0.0725 ­0.0115 2.1391 ­4.0192

8.8831 ­3.4626 0.1079 ­0.1636 0.1645 ­0.0959 0.0566 ­0.0567

0.5604 0.9251 0.81 ­0.24 1.6612 0.306 0.8257 ­0.2435

Coefficients on LMs corresponding to equations with expectational terms

­0.7868 0.9884 ­0.0211 0.0633 0.0155 0.0436 ­0.0038 0.0248

98.9923 ­40.4211 1.1717 ­2.052 1.5667 ­1.2282 0.5509 ­0.7437

22.697 ­20.588 0.4225 ­1.2083 ­0.352 ­0.8137 0.0546 ­0.4397

­0.0193 0.0142 ­0.0003 0.0008 ­0.0001 0.0005 ­0.0001 0.0003

27.2273 ­11.2455 0.3096 ­0.5963 0.3804 ­0.3595 0.1328 ­0.2217

­3.3148 ­0.0323 ­0.0207 ­0.0392 ­0.1331 ­0.0364 ­0.0273 ­0.02

5.9737 ­5.8089 0.2098 ­0.2147 0.293 ­0.1397 0.1349 ­0.0615

­1.7399 9.5285 ­0.0638 0.8599 0.7985 0.6125 0.1446 0.3727

10.9352 ­11.6702 0.2884 ­0.6743 0.013 ­0.4579 0.0968 ­0.2542

16.1871 ­11.6189 0.3211 ­0.6122 0.2239 ­0.4003 0.14 ­0.2226

9.6918 ­11.1071 0.2697 ­0.6496 ­0.0118 ­0.4424 0.0861 ­0.2463

10.6502 ­7.4211 0.2232 ­0.3698 0.2352 ­0.2383 0.1136 ­0.1332

TABLE 4.1B

Optimal Policy Rules
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Coefficients on non­disturbance state variables

­0.0043 0.002 0.4933 ­0.1928 ­0.0001 ­0.0001 0.3862 ­0.0376

­0.3332 ­6.6724 ­1.2896 ­5.2368 12.5202 0.3299 ­3.1447 ­2.1791

2.9054 ­1.3263 0.0597 ­0.0853 0.0846 ­0.0535 0.0306 ­0.0311

­0.0001 0 0 0 0 0 0 0

­4.4973 2.0529 ­0.0924 0.1321 ­0.131 0.0828 ­0.0473 0.0482

­4.4973 2.0529 ­0.0924 0.1321 ­0.131 0.0828 ­0.0473 0.0482

­1.4783 0.6748 ­0.0304 0.0434 ­0.0431 0.0272 ­0.0156 0.0158

12.7723 0.7612 0.4029 0.7814 2.0425 0.5919 0.5519 0.4166

2.1321 7.6201 2.9593 3.6309 14.3973 0.4875 4.4127 1.2707

­3.7203 1.5662 ­0.1168 ­0.1358 ­0.6628 ­0.1365 ­0.134 ­0.1021

­8.2601 8.2726 1.5473 5.5637 12.888 ­0.2917 3.6178 2.3847

­0.1495 ­2.5289 ­1.0066 ­0.9621 ­2.8609 ­0.1384 ­1.4786 ­0.2333

2.1804 ­0.9365 0.0946 ­0.0499 0.1682 ­0.019 0.0816 ­0.0183

0.4948 5.7038 0.8782 4.9562 12.1869 ­0.3308 2.6448 2.194

­12.6724 ­0.971 ­0.2537 ­0.5313 ­1.5162 ­0.448 ­0.3567 ­0.2763

­3.4414 2.4739 0.8191 0.2217 2.9778 ­0.1695 1.2232 ­0.1921

­0.9529 ­4.7092 ­2.6414 ­0.7471 ­10.774 0.1351 ­3.8602 0.5085

TABLE 4.2A
Optimal Policy Rules
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­6.1496 6.6541 3.0464 1.8617 2.8012 ­0.2081 4.7152 ­0.1868

2.9363 8.9776 6.5149 ­0.3822 32.4802 ­0.4962 9.1833 ­2.3974

­15.6954 ­1.0888 ­0.1089 ­0.2886 ­0.8491 ­0.2565 ­0.1693 ­0.144

­3.4435 ­0.6163 ­0.0147 ­0.0964 ­0.2068 ­0.0803 ­0.0381 ­0.045

6.1612 ­6.5729 ­3.0516 ­1.8558 ­2.8004 0.2137 ­4.7196 0.19

­2.9677 ­8.9439 ­6.5221 0.3858 ­32.5088 0.499 ­9.1919 2.4009

­6.1496 6.6541 3.0464 1.8617 2.8012 ­0.2081 4.7152 ­0.1868

2.9363 8.9776 6.5149 ­0.3822 32.4802 ­0.4962 9.1833 ­2.3974
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­3.1671 ­9.6835 ­7.0272 0.4122 ­35.0342 0.5353 ­9.9054 2.5859

0.1939 3.5636 2.9445 0.7442 11.4768 ­0.1994 4.2008 ­0.527

­1.4783 0.6748 ­0.0304 0.0434 ­0.0431 0.0272 ­0.0156 0.0158
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Coefficients on disturbance variables

0.3725 ­0.2463 0.1468 ­0.0051 0.5211 ­0.0355 0.1936 ­0.0413

0.1229 0.1633 0.2774 0.2331 0.6574 0.0356 0.3772 0.0793

­0.3345 0.1019 ­0.0532 ­0.0476 ­0.1749 ­0.0128 ­0.0739 ­0.0178

4.0717 ­3.2591 ­1.2115 ­0.2259 ­4.8188 0.2311 ­1.8059 0.3436

­1.1812 ­8.453 ­5.6849 ­0.215 ­26.2535 0.4188 ­8.1202 1.8213

­0.0333 0.006 ­0.001 ­0.0009 ­0.0063 ­0.0016 ­0.001 ­0.0006

4.4104 0.4533 3.815 ­2.9294 5.4199 ­0.0233 3.5895 ­2.4096

­19.6552 8.9721 ­0.4037 0.5772 ­0.5724 0.3619 ­0.2068 0.2107

­1.3446 0.6138 ­0.0276 0.0395 ­0.0392 0.0248 ­0.0141 0.0144

­6.1357 2.8008 ­0.126 0.1802 ­0.1787 0.113 ­0.0646 0.0658

4.474 ­2.0264 0.1157 ­0.0891 0.1848 ­0.0707 0.0841 ­0.02

0.349 ­0.3041 3.9151 ­6.3354 0.2656 0.0251 2.2956 ­3.8666

10.5273 ­4.8054 0.2162 ­0.3091 0.3066 ­0.1939 0.1108 ­0.1128

0.962 0.6689 0.8518 ­0.1599 1.7306 0.3206 0.8977 ­0.1899

Coefficients on LMs corresponding to equations with expectational terms

­0.4803 0.709 ­0.0236 0.0567 0.0044 0.0399 ­0.0063 0.0227

59.1055 ­28.2628 1.2123 ­1.9051 1.559 ­1.2084 0.578 ­0.7152

13.5413 ­14.694 0.4629 ­1.0989 ­0.1869 ­0.7571 0.0904 ­0.4096

­0.0116 0.0101 ­0.0004 0.0007 ­0.0002 0.0005 ­0.0001 0.0003

16.2804 ­7.8683 0.327 ­0.5458 0.3979 ­0.347 0.1476 ­0.2082

­1.9389 ­0.0637 ­0.0153 ­0.0293 ­0.1014 ­0.027 ­0.0208 ­0.0152

3.3122 ­4.0884 0.1964 ­0.2266 0.2287 ­0.1575 0.115 ­0.0753

­1.5727 6.9819 ­0.1334 0.7172 0.4872 0.5139 0.0659 0.3118

6.5113 ­8.3261 0.3065 ­0.6188 0.0828 ­0.4324 0.1116 ­0.2408

9.5833 ­8.2251 0.3307 ­0.5724 0.2435 ­0.3896 0.1446 ­0.2168

5.7698 ­7.9316 0.2884 ­0.5942 0.0607 ­0.4162 0.102 ­0.2322

6.2527 ­5.2372 0.226 ­0.3502 0.2276 ­0.2373 0.1126 ­0.1323

E F G H
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Coefficients on non­disturbance state variables

­0.0029 0.0009 0.5084 ­0.1719 ­0.0001 0 0.4079 ­0.0242

­1.7817 ­6.6112 ­1.2965 ­5.2415 ­13.1588 0.134 ­3.0978 ­2.1578

1.963 ­0.6374 0.0295 ­0.0429 0.0465 ­0.0257 0.0158 ­0.0153

­0.0001 0 0 0 0 0 0 0

­3.0385 0.9867 ­0.0457 0.0664 ­0.072 0.0398 ­0.0244 0.0237

­3.0385 0.9867 ­0.0457 0.0664 ­0.072 0.0398 ­0.0244 0.0237

­0.9988 0.3243 ­0.015 0.0218 ­0.0237 0.0131 ­0.008 0.0078

11.8154 ­0.5062 0.2952 0.5069 1.4279 0.3935 0.3784 0.2756

2.2895 8.5432 2.8352 3.6566 14.9317 0.7286 4.2582 1.238

­5.0814 2.4218 ­0.0479 0.0984 ­0.3849 0 ­0.0135 0.0183

­6.6498 9.2263 1.6198 5.7785 14.1784 0.1187 3.6873 2.4692

­0.297 ­2.4964 ­0.9572 ­0.9239 ­3.0055 ­0.1913 ­1.4085 ­0.1998

1.483 ­0.431 0.0701 ­0.0219 0.1392 0.0011 0.0671 ­0.009

2.0188 5.6284 0.9066 4.9732 12.8967 ­0.13 2.6449 2.1956

­11.0793 0.2205 ­0.1816 ­0.3316 ­1.014 ­0.2834 ­0.2369 ­0.1761

­3.7307 3.0665 0.8398 0.3575 3.4445 ­0.0053 1.2686 ­0.1312

­1.7144 ­4.6292 ­2.5184 ­0.6527 ­11.367 ­0.0284 ­3.7121 0.5806

TABLE 4.3A
Optimal Policy Rules

I J K L
u t, V t , Y t

åi t?1
å
N t?1

M

år t?1
DCB

åb t?1
CB

åi t?1
G

åb t?1
DG

åi t?1
B

åp t?1
C

åW t?1
z

å̂
t?1
W

å̂
t?1
D

å̂
t?1
N

åz t?1
E

åe t?1
å̂

t?1
C

w t?1
åp t?1

N

å̂
1,t?1
D

å̂
2,t?1
D

å̂
1,t?1
C

å̂
2,t?1
C

å
N 1,t?1

M

å
N 2,t?1

M

åW1,t?1
z

åW2,t?1
z

åe 1,t?1
åe 2,t?1
åe 3,t?1
åp 0,t?1
DDX

åp 1,t?1
DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

åi t?1
L

­6.1565 6.6757 2.8791 1.7407 3.6521 0.04 4.5003 ­0.2894

5.9781 8.8187 6.2371 ­0.5883 34.0061 ­0.1134 8.8712 ­2.5515

­10.9998 ­0.0892 ­0.0791 ­0.1732 ­0.5439 ­0.1552 ­0.1103 ­0.0884

­2.4291 ­0.1808 ­0.0139 ­0.0557 ­0.1337 ­0.0469 ­0.0257 ­0.0267

6.1926 ­6.5336 ­2.8856 ­1.7265 ­3.6455 ­0.0285 ­4.5041 0.2962

­6.0544 ­8.7531 ­6.245 0.5958 ­34.0348 0.1183 ­8.8796 2.5566

­6.1565 6.6757 2.8791 1.7407 3.6521 0.04 4.5003 ­0.2894

5.9781 8.8187 6.2371 ­0.5883 34.0061 ­0.1134 8.8712 ­2.5515

­8.4032 ­0.1302 1.7127 ­3.7954 ­10.3995 ­0.1791 1.54 ­2.8398

13.0888 2.3115 3.6221 ­2.5122 32.7409 ­0.1655 4.7146 ­2.44

­6.4482 ­9.5121 ­6.7276 0.6346 ­36.6801 0.1223 ­9.5688 2.7521

1.8637 0.3209 ­5.3982 10.1904 ­0.4521 ­0.1226 ­3.6234 6.5256

­8.4032 ­0.1302 1.7127 ­3.7954 ­10.3995 ­0.1791 1.54 ­2.8398

13.0888 2.3115 3.6221 ­2.5122 32.7409 ­0.1655 4.7146 ­2.44

­6.4482 ­9.5121 ­6.7276 0.6346 ­36.6801 0.1223 ­9.5688 2.7521

2.5205 2.2648 2.8501 0.4816 12.0274 ­0.1378 4.0359 ­0.6745

­0.9988 0.3243 ­0.015 0.0218 ­0.0237 0.0131 ­0.008 0.0078

­0.6683 0.196 0.0265 0.0419 0.0714 ­0.007 0.0496 0.0101

åz t?1
E
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å̂
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C
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C
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M
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M
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z
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z
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åp 1,t?1
DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

åi t?1
L
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Coefficients on disturbance variables

0.7074 ­0.5258 0.1451 ­0.0522 0.516 ­0.0571 0.1808 ­0.0634

1.0066 ­0.3146 0.277 0.162 0.6644 0.0072 0.3551 0.0437

­0.5264 0.1991 ­0.046 ­0.0216 ­0.1593 ­0.0016 ­0.0603 ­0.004

4.3623 ­3.9979 ­1.2142 ­0.3697 ­5.4247 0.0224 ­1.8363 0.283

­3.6004 ­8.336 ­5.4384 ­0.0336 ­27.6179 0.0684 ­7.8372 1.96

­0.0381 0.0112 ­0.0004 0.0005 ­0.0039 ­0.0007 ­0.0002 0.0001

2.3972 2.4318 3.6137 ­2.8536 5.5587 0.1504 3.4231 ­2.4154

­13.2796 4.3122 ­0.1999 0.2903 ­0.3149 0.1739 ­0.1068 0.1038

­0.9085 0.295 ­0.0137 0.0199 ­0.0215 0.0119 ­0.0073 0.0071

­4.1455 1.3461 ­0.0624 0.0906 ­0.0983 0.0543 ­0.0333 0.0324

3.1007 ­1.015 0.0699 ­0.0308 0.1281 ­0.0312 0.0599 0.001

0.757 ­0.2677 3.734 ­6.4645 0.0938 ­0.0037 2.1591 ­3.9354

7.1125 ­2.3096 0.1071 ­0.1555 0.1686 ­0.0931 0.0572 ­0.0556

0.0582 1.1578 0.794 ­0.1546 1.6891 0.3452 0.8325 ­0.2056

Coefficients on LMs corresponding to equations with expectational terms

­0.6028 0.6274 ­0.0205 0.0594 0.0129 0.0414 ­0.004 0.024

78.511 ­26.6926 1.154 ­1.9365 1.6146 ­1.1822 0.5556 ­0.7236

17.9143 ­13.2432 0.4128 ­1.1393 ­0.3104 ­0.7769 0.0582 ­0.4272

­0.0152 0.0091 ­0.0003 0.0008 ­0.0001 0.0005 ­0.0001 0.0003

21.5362 ­7.4129 0.3047 ­0.5625 0.3954 ­0.3454 0.1344 ­0.2156

­2.7075 0.0379 ­0.0209 ­0.036 ­0.1293 ­0.0334 ­0.0269 ­0.019

5.1994 ­3.8177 0.2074 ­0.2051 0.2945 ­0.1374 0.1342 ­0.061

­0.3647 5.8155 ­0.0573 0.8012 0.7522 0.5737 0.1391 0.3583

8.686 ­7.4802 0.2825 ­0.6344 0.0367 ­0.4368 0.0987 ­0.2466

12.9758 ­7.5402 0.3156 ­0.5773 0.2416 ­0.3839 0.1413 ­0.2165

7.697 ­7.1091 0.264 ­0.611 0.0113 ­0.4218 0.0881 ­0.2388

8.6369 ­4.8356 0.2197 ­0.349 0.2446 ­0.2294 0.1142 ­0.1297

TABLE 4.3B

Optimal Policy Rules

I J K L

åg t
åz t

C

åz t
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åO t
åz t
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t
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t
DDN
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DD

å
d t
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d t
DDG
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zDD

åp t
DDX
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DD

åW t?1
zDD

æ
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d
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c

V t?1
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V t?1
bDB

V t?1
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V t?1
t

V t?1
r

V t?1
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V t?1
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V t?1
@D

V t?1
HD

V t?1
@N

V t?1
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Coefficients on non­disturbance state variables

­0.0036 0.0014 0.4527 ­0.0923 0 0 0.3777 ­0.0004

­0.9475 ­6.6534 ­1.9634 ­5.0621 ­13.029 0.3371 ­3.6437 ­2.5514

2.4527 ­0.9565 0.021 ­0.0315 0.0333 ­0.0264 0.0121 ­0.0126

­0.0001 0 0 0 0 0 0 0

­3.7965 1.4805 ­0.0325 0.0487 ­0.0515 0.0408 ­0.0188 0.0195

­3.7965 1.4805 ­0.0325 0.0487 ­0.0515 0.0408 ­0.0188 0.0195

­1.248 0.4867 ­0.0107 0.016 ­0.0169 0.0134 ­0.0062 0.0064

12.4328 0.0606 0.3691 0.4315 1.4236 0.4342 0.4142 0.2616

2.1496 8.1193 3.8904 2.5712 14.7403 0.4612 5.095 1.0197

­4.3446 2.0202 ­0.0433 ­0.0234 ­0.4557 ­0.0968 ­0.0422 ­0.0337

­7.6645 8.8138 2.3929 5.3709 14.0219 ­0.1648 4.2879 2.7774

­0.1983 ­2.5139 ­1.2136 ­0.4755 ­2.9496 ­0.1188 ­1.5202 ­0.0557

1.846 ­0.6651 0.0722 ­0.0295 0.1301 0.0004 0.0694 ­0.0151

1.1435 5.6769 1.4943 5.0079 12.8158 ­0.2916 3.1992 2.6729

­12.0415 ­0.3046 ­0.2298 ­0.2813 ­1.0024 ­0.3107 ­0.2591 ­0.1669

­3.6218 2.7999 1.0921 ­0.0855 3.3797 ­0.1095 1.4277 ­0.2982

­1.2551 ­4.6726 ­3.2507 0.452 ­11.3156 0.0961 ­4.2334 0.9973

TABLE 4.4A
Optimal Policy Rules

M N O P
u t, V t , Y t

åi t?1
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N t?1

M

år t?1
DCB

åb t?1
CB

åi t?1
G

åb t?1
DG

åi t?1
B

åp t?1
C

åW t?1
z

å̂
t?1
W

å̂
t?1
D

å̂
t?1
N

åz t?1
E

åe t?1
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t?1
C

w t?1
åp t?1

N
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1,t?1
D
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D
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N 2,t?1

M

åW1,t?1
z

åW2,t?1
z

åe 1,t?1
åe 2,t?1
åe 3,t?1
åp 0,t?1
DDX

åp 1,t?1
DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

åi t?1
L

­6.2431 6.6724 3.3438 0.0861 3.5649 ­0.1423 4.2889 ­0.938

4.2183 8.916 8.2155 ­3.1102 33.9651 ­0.3384 10.6632 ­3.5979

­13.4341 ­0.5225 ­0.1044 ­0.1453 ­0.5265 ­0.1688 ­0.1212 ­0.0833

­2.955 ­0.3735 ­0.0225 ­0.0456 ­0.1309 ­0.0507 ­0.0291 ­0.0248

6.2631 ­6.559 ­3.3474 ­0.0801 ­3.5621 0.1485 ­4.292 0.9418

­4.2686 ­8.8661 ­8.2233 3.1156 ­33.994 0.3412 ­10.6727 3.6023

­6.2431 6.6724 3.3438 0.0861 3.5649 ­0.1423 4.2889 ­0.938

4.2183 8.916 8.2155 ­3.1102 33.9651 ­0.3384 10.6632 ­3.5979

­7.6282 ­0.1402 1.491 ­5.372 ­10.368 ­0.1651 0.6981 ­3.9334

11.284 2.4201 5.2547 ­3.4477 32.7906 ­0.2115 6.8755 ­2.869

­4.55 ­9.6171 ­8.8615 3.3548 ­36.6359 0.365 ­11.5017 3.8808

1.8628 0.3689 ­6.4985 13.1381 ­0.4402 ­0.1255 ­4.4423 8.7442

­7.6282 ­0.1402 1.491 ­5.372 ­10.368 ­0.1651 0.6981 ­3.9334

11.284 2.4201 5.2547 ­3.4477 32.7906 ­0.2115 6.8755 ­2.869

­4.55 ­9.6171 ­8.8615 3.3548 ­36.6359 0.365 ­11.5017 3.8808

1.2163 2.8914 3.5867 ­0.5158 12.0432 ­0.1668 4.6033 ­1.0487

­1.248 0.4867 ­0.0107 0.016 ­0.0169 0.0134 ­0.0062 0.0064

­0.6852 0.1623 0.0348 0.0246 0.0681 ­0.0142 0.0521 0.0056
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Coefficients on disturbance variables

0.5252 ­0.3922 0.1658 ­0.0552 0.5314 ­0.0359 ­0.0685 ­0.0048

0.5062 ­0.0827 0.3212 0.1193 0.6685 0.0254 ­2.0939 0.5227

­0.4182 0.1522 ­0.0554 ­0.0192 ­0.1647 ­0.0101 ­9.2201 2.8833

4.2557 ­3.6617 ­1.5909 0.2557 ­5.3581 0.1525 ­0.0003 0

­2.1843 ­8.4105 ­7.0921 2.242 ­27.5649 0.2844 3.9944 ­3.4675

­0.0358 0.0088 ­0.0004 0.0001 ­0.0042 ­0.0011 ­0.0821 0.085

3.3796 1.5284 4.4404 ­4.598 5.404 0.0126 ­0.0056 0.0058

­16.5924 6.4704 ­0.1422 0.2128 ­0.2252 0.1784 ­0.0256 0.0265

­1.1351 0.4426 ­0.0097 0.0146 ­0.0154 0.0122 0.0548 0.0103

­5.1796 2.0198 ­0.0444 0.0664 ­0.0703 0.0557 3.0228 ­5.3102

3.8124 ­1.4827 0.057 ­0.0072 0.1117 ­0.0289 0.044 ­0.0455

0.5189 ­0.2796 4.6792 ­8.2527 0.058 ­0.0113 0.9349 ­0.434

8.8868 ­3.4655 0.0761 ­0.114 0.1206 ­0.0955 0.0016 ­0.0065

0.5613 0.9248 0.974 ­0.5648 1.66 0.306 0.0195 0.0635

Coefficients on LMs corresponding to equations with expectational terms

­0.7858 0.9881 ­0.0098 0.0456 0.0235 0.0436 0.0006 0.0208

98.9263 ­40.4135 0.7807 ­1.4431 1.0658 ­1.2236 0.3943 ­0.6063

22.7053 ­20.5428 0.2216 ­0.8585 ­0.3593 ­0.8136 0.001 ­0.3728

­0.0193 0.0141 ­0.0002 0.0006 0.0001 0.0005 ­0.0001 0.0003

27.2147 ­11.2453 0.1978 ­0.4218 0.243 ­0.3582 0.0881 ­0.1822

­3.3136 ­0.0322 ­0.026 ­0.0306 ­0.1242 ­0.0364 ­0.0291 ­0.0181

5.9676 ­5.8076 0.165 ­0.1451 0.235 ­0.1391 0.1174 ­0.0464

­1.7318 9.5259 0.0794 0.635 0.851 0.612 0.1998 0.3219

10.9228 ­11.6676 0.1649 ­0.4813 ­0.0891 ­0.4569 0.0488 ­0.2113

16.1728 ­11.6165 0.2061 ­0.4328 0.1076 ­0.3992 0.0948 ­0.1826

9.6803 ­11.1046 0.1511 ­0.4643 ­0.1075 ­0.4415 0.04 ­0.205

10.639 ­7.4238 0.1507 ­0.2606 0.1434 ­0.2374 0.0825 ­0.1079

TABLE 4.4B
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Optimal Policy Rules for a FER regime

A B C D E F G H

Coefficients on non­disturbance state variables

­0.0094 ­0.0093 ­0.0094 ­0.0093 ­0.0094 ­0.0093 ­0.0094 ­0.0094

­0.2566 ­0.2566 ­0.2347 ­0.2347 ­0.2593 ­0.2593 ­0.245 ­0.245

­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002

­0.008 ­0.008 ­0.0055 ­0.0055 0.0067 0.0067 0.0068 0.0068

­0.008 ­0.008 ­0.0055 ­0.0055 0.0067 0.0067 0.0068 0.0068

0.0097 0.0097 0.0106 0.0106 0.0146 0.0146 0.0147 0.0147

0.008 0.008 0.0067 0.0067 0.0084 0.0084 0.0074 0.0074

0.2829 0.2828 0.2545 0.2544 0.2865 0.2865 0.267 0.267

0.0483 0.0483 0.0445 0.0445 0.0488 0.0488 0.046 0.046

0.3095 0.3094 0.281 0.2809 0.3133 0.3133 0.294 0.294

­0.1008 ­0.1008 ­0.0872 ­0.0872 ­0.1037 ­0.1037 ­0.0934 ­0.0934

0.0131 0.0131 0.0109 0.0109 0.005 0.005 0.0044 0.0044

0.2382 0.2382 0.2232 0.2232 0.2397 0.2396 0.2305 0.2305

­0.0044 ­0.0044 ­0.0037 ­0.0037 ­0.0046 ­0.0046 ­0.0041 ­0.0041

0.0748 0.0747 0.0624 0.0624 0.0774 0.0774 0.0681 0.0681

­0.1284 ­0.1284 ­0.1 ­0.1 ­0.135 ­0.135 ­0.1134 ­0.1134

TABLE 5.1A
Optimal Policy Rules ­ FER

u t, V t , Y t
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DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

å
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L

0.2854 0.2854 0.2286 0.2286 0.2953 0.2953 0.2505 0.2504

0.1451 0.1451 0.0926 0.0926 0.1603 0.1603 0.1207 0.1207

­0.0019 ­0.0019 ­0.0016 ­0.0016 ­0.0021 ­0.0021 ­0.0018 ­0.0018

­0.0005 ­0.0005 ­0.0004 ­0.0004 ­0.0006 ­0.0006 ­0.0005 ­0.0005

­0.285 ­0.2849 ­0.2281 ­0.2281 ­0.2949 ­0.2948 ­0.25 ­0.25

­0.1446 ­0.1446 ­0.092 ­0.092 ­0.1598 ­0.1598 ­0.1201 ­0.1201

0.2854 0.2854 0.2286 0.2286 0.2953 0.2953 0.2505 0.2504

0.1451 0.1451 0.0926 0.0926 0.1603 0.1603 0.1207 0.1207

0.0306 0.0305 ­0.0089 ­0.0089 0.0384 0.0384 0.0042 0.0042

­0.1513 ­0.1513 ­0.1467 ­0.1467 ­0.1456 ­0.1456 ­0.14 ­0.1399

­0.1566 ­0.1565 ­0.0999 ­0.0999 ­0.173 ­0.1729 ­0.1302 ­0.1302

0.0736 0.0736 0.1004 0.1004 0.0573 0.0574 0.0813 0.0813

0.0306 0.0305 ­0.0089 ­0.0089 0.0384 0.0384 0.0042 0.0042

­0.1513 ­0.1513 ­0.1467 ­0.1467 ­0.1456 ­0.1456 ­0.14 ­0.1399

­0.1566 ­0.1565 ­0.0999 ­0.0999 ­0.173 ­0.1729 ­0.1302 ­0.1302

0.1492 0.1492 0.1174 0.1174 0.1573 0.1573 0.133 0.133

0.0097 0.0097 0.0106 0.0106 0.0146 0.0146 0.0147 0.0147

0.0042 0.0042 0.0036 0.0036 0.0043 0.0043 0.0038 0.0038
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A B C D E F G H

Coefficients on disturbance variables

0.0461 0.0461 0.0456 0.0456 0.047 0.047 0.0465 0.0465

0.0326 0.0326 0.0289 0.0289 0.0338 0.0338 0.0309 0.0309

0.002 0.002 0.0022 0.0022 0.0019 0.0019 0.002 0.002

­0.088 ­0.088 ­0.0718 ­0.0718 ­0.0916 ­0.0916 ­0.0794 ­0.0794

­0.1748 ­0.1748 ­0.1229 ­0.1229 ­0.1886 ­0.1886 ­0.1492 ­0.1492

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.2011 0.201 0.1677 0.1677 0.1883 0.1882 0.1649 0.1649

0.9037 0.9036 0.9217 0.9217 0.9723 0.9722 0.9773 0.9773

0.988 0.9879 0.992 0.9919 0.994 0.9939 0.9962 0.9962

­0.011 ­0.011 ­0.0075 ­0.0075 0.0092 0.0092 0.0093 0.0093

0.023 0.023 0.0193 0.0193 0.0061 0.0061 0.0054 0.0054

­0.0232 ­0.0232 ­0.0322 ­0.0322 ­0.0137 ­0.0137 ­0.0216 ­0.0216

0.0188 0.0188 0.0129 0.0129 ­0.0157 ­0.0157 ­0.016 ­0.016

0.0453 0.0453 0.037 0.037 0.0447 0.0447 0.0386 0.0386

Coefficients on LMs corresponding to equations with expectational terms

0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

­0.0057 ­0.0057 ­0.0048 ­0.0048 ­0.003 ­0.003 ­0.0026 ­0.0026

­0.0051 ­0.0051 ­0.004 ­0.004 ­0.0032 ­0.0032 ­0.0026 ­0.0026

0 0 0 0 0 0 0 0

­0.0029 ­0.0029 ­0.0024 ­0.0024 ­0.0015 ­0.0015 ­0.0013 ­0.0013

­0.0004 ­0.0004 ­0.0004 ­0.0004 ­0.0002 ­0.0002 ­0.0002 ­0.0002

0.0014 0.0014 0.0012 0.0012 0.0008 0.0008 0.0007 0.0007

0.0068 0.0068 0.0057 0.0057 0.0036 0.0036 0.0031 0.0031

­0.0017 ­0.0017 ­0.0014 ­0.0014 ­0.0009 ­0.0009 ­0.0008 ­0.0008

­0.001 ­0.001 ­0.0008 ­0.0008 ­0.0005 ­0.0005 ­0.0004 ­0.0004

­0.0018 ­0.0018 ­0.0015 ­0.0015 ­0.0009 ­0.0009 ­0.0008 ­0.0008

­0.0002 ­0.0002 ­0.0002 ­0.0002 0 0 ­0.0001 ­0.0001
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I J K L M N O P

Coefficients on non­disturbance state variables

­0.0094 ­0.0093 ­0.0094 ­0.0094 ­0.0093 ­0.0093 ­0.0094 ­0.0093

­0.2565 ­0.2565 ­0.2349 ­0.2349 ­0.252 ­0.252 ­0.2327 ­0.2327

­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0002

­0.0075 ­0.0075 ­0.0051 ­0.0051 ­0.035 ­0.035 ­0.0285 ­0.0285

­0.0075 ­0.0075 ­0.0051 ­0.0051 ­0.035 ­0.035 ­0.0285 ­0.0285

0.0099 0.0099 0.0108 0.0108 0.0008 0.0008 0.003 0.003

0.0079 0.0079 0.0066 0.0066 0.0075 0.0075 0.0063 0.0063

0.2835 0.2834 0.2553 0.2552 0.2757 0.2757 0.2487 0.2487

0.049 0.049 0.0452 0.0452 0.0468 0.0468 0.0435 0.0435

0.3095 0.3095 0.2813 0.2813 0.3023 0.3023 0.2772 0.2772

­0.1009 ­0.1009 ­0.0874 ­0.0874 ­0.0956 ­0.0955 ­0.0835 ­0.0835

0.0127 0.0127 0.0107 0.0107 0.0279 0.0279 0.0236 0.0236

0.238 0.238 0.2232 0.2232 0.2358 0.2358 0.2226 0.2226

­0.0043 ­0.0043 ­0.0036 ­0.0036 ­0.0041 ­0.0041 ­0.0035 ­0.0035

0.075 0.075 0.0628 0.0628 0.0697 0.0697 0.0586 0.0586

­0.1285 ­0.1285 ­0.1004 ­0.1004 ­0.1163 ­0.1162 ­0.0906 ­0.0906

TABLE 5.2A
Optimal Policy Rules ­ FER
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0.2856 0.2855 0.2292 0.2292 0.2675 0.2675 0.2185 0.2185

0.1455 0.1455 0.0934 0.0934 0.1175 0.1174 0.0682 0.0682

­0.0019 ­0.0019 ­0.0016 ­0.0016 ­0.0018 ­0.0018 ­0.0015 ­0.0015

­0.0005 ­0.0005 ­0.0004 ­0.0004 ­0.0005 ­0.0005 ­0.0004 ­0.0004
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­0.145 ­0.1449 ­0.0928 ­0.0928 ­0.1169 ­0.1169 ­0.0676 ­0.0676

0.2856 0.2855 0.2292 0.2292 0.2675 0.2675 0.2185 0.2185

0.1455 0.1455 0.0934 0.0934 0.1175 0.1174 0.0682 0.0682
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­0.1511 ­0.151 ­0.1465 ­0.1464 ­0.1619 ­0.1618 ­0.1622 ­0.1621

­0.157 ­0.1569 ­0.1008 ­0.1007 ­0.1267 ­0.1267 ­0.0735 ­0.0735
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I J K L M N O P

Coefficients on disturbance variables

0.046 0.046 0.0454 0.0454 0.0447 0.0446 0.0443 0.0443

0.0321 0.0321 0.0285 0.0285 0.0309 0.0309 0.0276 0.0276

0.0021 0.0021 0.0022 0.0022 0.002 0.002 0.0022 0.0022

­0.0885 ­0.0885 ­0.0724 ­0.0724 ­0.0811 ­0.0811 ­0.0665 ­0.0665

­0.1752 ­0.1751 ­0.1237 ­0.1237 ­0.1498 ­0.1498 ­0.1019 ­0.1019

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.2004 0.2004 0.1674 0.1674 0.2247 0.2246 0.1866 0.1866

0.9063 0.9063 0.9238 0.9238 0.778 0.7779 0.814 0.814

0.9883 0.9882 0.9922 0.9921 0.977 0.9769 0.9825 0.9824

­0.0103 ­0.0103 ­0.0069 ­0.0069 ­0.0477 ­0.0477 ­0.0389 ­0.0389

0.0222 0.0222 0.0187 0.0187 0.0539 0.0539 0.0458 0.0458

­0.023 ­0.023 ­0.0319 ­0.0319 ­0.0404 ­0.0404 ­0.0512 ­0.0512

0.0176 0.0176 0.0119 0.0119 0.0819 0.0819 0.0668 0.0668

0.0455 0.0455 0.0372 0.0372 0.0463 0.0463 0.0378 0.0378

Coefficients on LMs corresponding to equations with expectational terms

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

­0.0056 ­0.0056 ­0.0047 ­0.0047 ­0.0053 ­0.0053 ­0.0045 ­0.0045

­0.0051 ­0.0051 ­0.0039 ­0.0039 ­0.0043 ­0.0043 ­0.0035 ­0.0035

0 0 0 0 0 0 0 0

­0.0028 ­0.0028 ­0.0024 ­0.0024 ­0.0027 ­0.0027 ­0.0023 ­0.0023

­0.0004 ­0.0004 ­0.0004 ­0.0004 ­0.0004 ­0.0004 ­0.0004 ­0.0004

0.0014 0.0014 0.0012 0.0012 0.0013 0.0013 0.0011 0.0011

0.0067 0.0067 0.0056 0.0056 0.0064 0.0064 0.0054 0.0054

­0.0016 ­0.0016 ­0.0014 ­0.0014 ­0.0016 ­0.0016 ­0.0013 ­0.0013

­0.001 ­0.001 ­0.0008 ­0.0008 ­0.0009 ­0.0009 ­0.0008 ­0.0008

­0.0018 ­0.0018 ­0.0015 ­0.0015 ­0.0017 ­0.0017 ­0.0014 ­0.0014

­0.0002 ­0.0002 ­0.0002 ­0.0002 ­0.0003 ­0.0003 ­0.0003 ­0.0003
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Optimal Policy Rules for a PER regime

A B C D E F G H

Coefficients on non­disturbance state variables

­6.1555 ­6.1552 ­4.5373 ­4.5373 ­6.2324 ­6.2321 ­4.8788 ­4.8788

0.008 0.0072 0.0059 0.0056 0.0079 0.0072 0.0063 0.0059

0.116 0.116 0.1266 0.1266 ­0.0575 ­0.0575 ­0.0197 ­0.0197

­0.1478 ­0.1478 ­0.1723 ­0.1723 0.1195 0.1194 0.0548 0.0548

­0.1478 ­0.1478 ­0.1723 ­0.1723 0.1195 0.1194 0.0548 0.0548

­0.0593 ­0.0593 ­0.0646 ­0.0646 0.029 0.029 0.0098 0.0098

0.2782 0.2782 0.223 0.223 0.2906 0.2906 0.2459 0.2459

6.3572 6.3566 4.5168 4.5168 6.5257 6.5252 4.9793 4.9793

0.7549 0.7549 0.5978 0.5978 0.7696 0.7696 0.646 0.646

7.5315 7.5311 5.6146 5.6146 7.654 7.6536 6.0513 6.0513

­2.1233 ­2.1231 ­1.5264 ­1.5264 ­2.2205 ­2.2203 ­1.7344 ­1.7344

0.2035 0.2035 0.188 0.188 0.0578 0.0579 0.0706 0.0706

5.3419 5.3416 3.9619 3.9619 5.3759 5.3756 4.2042 4.2042

­0.1529 ­0.1529 ­0.1225 ­0.1225 ­0.1602 ­0.1602 ­0.1355 ­0.1355

1.8282 1.828 1.2309 1.2309 1.9219 1.9217 1.4237 1.4237

­3.6704 ­3.6699 ­2.2409 ­2.2409 ­3.907 ­3.9066 ­2.6981 ­2.6981
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6.3162 6.3158 4.5022 4.5022 6.663 6.6627 5.2441 5.2441

6.4138 6.4124 3.1549 3.1549 6.961 6.9598 4.1143 4.1142
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A B C D E F G H

Coefficients on disturbance variables

0.0426 0.0426 0.0008 0.0008 0.0639 0.0639 0.0248 0.0248

0.6377 0.6376 0.474 0.474 0.6753 0.6753 0.5409 0.5409

­0.0052 ­0.0052 0.0025 0.0025 ­0.0081 ­0.0081 ­0.0011 ­0.0011

­2.2714 ­2.2712 ­1.4613 ­1.4613 ­2.3986 ­2.3984 ­1.7172 ­1.7172

­6.3643 ­6.3631 ­3.4409 ­3.4408 ­6.8572 ­6.8562 ­4.3352 ­4.3351

0.0037 0.0037 0.0029 0.0029 0.0037 0.0037 0.0032 0.0032

2.7855 2.7849 1.6011 1.6011 2.737 2.7365 1.8141 1.8141

­1.7014 ­1.7005 ­1.5586 ­1.5582 ­0.482 ­0.4812 ­0.5774 ­0.577

­0.4521 ­0.4511 ­0.3292 ­0.329 ­0.3552 ­0.3542 ­0.272 ­0.2717

­0.2016 ­0.2016 ­0.235 ­0.235 0.163 0.163 0.0747 0.0747

0.3268 0.3268 0.3255 0.3255 0.0187 0.0188 0.0706 0.0706

­1.5318 ­1.5325 ­1.788 ­1.788 ­1.1659 ­1.1664 ­1.4151 ­1.4151

0.3459 0.3459 0.4032 0.4032 ­0.2796 ­0.2796 ­0.1282 ­0.1282

1.0287 1.0285 0.7057 0.7057 1.058 1.0579 0.7993 0.7993

Coefficients on LMs corresponding to equations with expectational terms

0.0081 0.0081 0.0065 0.0065 0.0042 0.0042 0.0036 0.0036

­0.2071 ­0.2071 ­0.1656 ­0.1656 ­0.1084 ­0.1084 ­0.0915 ­0.0915

­0.2078 ­0.2078 ­0.1459 ­0.1459 ­0.1407 ­0.1407 ­0.1004 ­0.1004

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0 0

­0.1011 ­0.1011 ­0.081 ­0.081 ­0.0527 ­0.0527 ­0.0445 ­0.0445

­0.0154 ­0.0154 ­0.0124 ­0.0124 ­0.0081 ­0.0081 ­0.0068 ­0.0068

0.0488 0.0488 0.0391 0.0391 0.0255 0.0255 0.0216 0.0216

0.2389 0.2389 0.1914 0.1914 0.1249 0.1249 0.1056 0.1056

­0.0607 ­0.0607 ­0.0486 ­0.0486 ­0.0317 ­0.0317 ­0.0268 ­0.0268

­0.0363 ­0.0363 ­0.0291 ­0.0291 ­0.0189 ­0.0189 ­0.016 ­0.016

­0.0646 ­0.0646 ­0.0518 ­0.0518 ­0.0336 ­0.0336 ­0.0284 ­0.0284

­0.0088 ­0.0088 ­0.0089 ­0.0089 ­0.001 ­0.001 ­0.0025 ­0.0025

TABLE 6.1B

Optimal Policy Rules ­ PER

åg t
åz t

C

åz t
H

åO t
åz t

A

å̀
t

å̂
t
DDN

åi t
DD

å
d t
DDB

å
d t
DDG

åW t
zDD

åp t
DDX

åi t?1
DD

åW t?1
zDD

æ
Z t

V t?1
d

V t?1
c

V t?1
V0

V t?1
bDB

V t?1
iL

V t?1
t

V t?1
r

V t?1
@W

V t?1
HW

V t?1
@D

V t?1
HD

V t?1
@N

V t?1
HN

å
N t?1

M

å
i t?1
år t?1
DCB

å
i t?1

G

å
b t?1
DG

å
i t?1

B

åp t?1
C

åW t?1
z

å^ t?1
W

å^ t?1
D

å^ t?1
N

åz t?1
E

åe t?1
å^ t?1

C

w t?1
åp t?1

N

å^1,t?1
D

å̂
2,t?1
D

å^1,t?1
C

å̂
2,t?1
C

å
N 1,t?1

M

å
N 2,t?1

M

åW1,t?1
z

åW2,t?1
z

åe 1,t?1
åe 2,t?1
åe 3,t?1
åp 0,t?1
DDX

åp 1,t?1
DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

å
i t?1

L



68

I J K L M N O P

Coefficients on non­disturbance state variables

­6.1499 ­6.1496 ­4.5423 ­4.5423 ­6.0214 ­6.0212 ­4.7041 ­4.7041

0.0079 0.0071 0.0058 0.0055 0.0082 0.0078 0.0063 0.0061

0.1097 0.1096 0.1216 0.1216 0.4354 0.4354 0.3864 0.3864

­0.1383 ­0.1383 ­0.1646 ­0.1646 ­0.6394 ­0.6394 ­0.5712 ­0.5712

­0.1383 ­0.1383 ­0.1646 ­0.1646 ­0.6394 ­0.6394 ­0.5712 ­0.5712

­0.0561 ­0.056 ­0.0621 ­0.062 ­0.2218 ­0.2218 ­0.1968 ­0.1968

0.2737 0.2737 0.2197 0.2197 0.2614 0.2614 0.2141 0.2141

6.3782 6.3776 4.5446 4.5446 6.0322 6.0318 4.478 4.478

0.7797 0.7797 0.6189 0.6189 0.7057 0.7057 0.5717 0.5717

7.5331 7.5327 5.6274 5.6274 7.3074 7.3071 5.7393 5.7393

­2.125 ­2.1248 ­1.5321 ­1.5321 ­1.9459 ­1.9458 ­1.4387 ­1.4387

0.196 0.196 0.1822 0.1821 0.4738 0.4738 0.4094 0.4094

5.3341 5.3338 3.963 3.963 5.2873 5.2871 4.1795 4.1795

­0.1504 ­0.1504 ­0.1208 ­0.1208 ­0.1434 ­0.1434 ­0.1175 ­0.1175

1.8384 1.8382 1.243 1.243 1.6494 1.6493 1.1455 1.1455

­3.6761 ­3.6756 ­2.2544 ­2.2543 ­3.2371 ­3.2367 ­2.0355 ­2.0355

TABLE 6.2A
Optimal Policy Rules ­ PER

u t, V t , Y t
å
N t?1

M

å
i t?1
år t?1

DCB

å
i t?1

G

å
b t?1
DG

å
i t?1

B

åp t?1
C

åW t?1
z

å^ t?1
W

å^ t?1
D

å^ t?1
N

åz t?1
E

åe t?1
å^ t?1

C

w t?1
åp t?1

N

å^1,t?1
D

å̂
2,t?1
D

å^1,t?1
C

å̂
2,t?1
C

å
N 1,t?1

M

å
N 2,t?1

M

åW1,t?1
z

åW2,t?1
z

åe 1,t?1
åe 2,t?1
åe 3,t?1
åp 0,t?1

DDX

åp 1,t?1
DDX

åp 2,t?1
DDX

åp 3,t?1
DDX

åc t?1
å
b t?1
DB

å
i t?1

L

6.3222 6.3218 4.5221 4.5221 5.683 5.6826 4.1194 4.1193

6.4276 6.4262 3.1835 3.1835 5.4104 5.4096 2.6954 2.6954
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­6.933 ­6.9315 ­3.4338 ­3.4338 ­5.8359 ­5.835 ­2.9073 ­2.9073

2.2906 2.2916 2.8607 2.8607 3.4039 3.4046 4.0242 4.0242

0.1887 0.1885 ­0.0848 ­0.0848 ­0.3599 ­0.3601 ­0.6837 ­0.6837

0.1136 0.1127 ­1.4438 ­1.4439 ­0.294 ­0.2945 ­1.536 ­1.536
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I J K L M N O P

Coefficients on disturbance variables

0.0366 0.0366 ­0.0038 ­0.0037 0.0099 0.0099 ­0.0212 ­0.0212

0.621 0.6209 0.4619 0.4619 0.5854 0.5854 0.4466 0.4466

­0.0015 ­0.0015 0.0055 0.0055 ­0.0036 ­0.0036 0.003 0.003

­2.2871 ­2.2869 ­1.479 ­1.479 ­2.0267 ­2.0265 ­1.3453 ­1.3453

­6.376 ­6.3748 ­3.467 ­3.4669 ­5.4611 ­5.4604 ­3.0168 ­3.0168

0.0037 0.0037 0.003 0.003 0.0035 0.0035 0.0028 0.0028

2.7735 2.7729 1.6003 1.6003 2.8843 2.8838 1.6825 1.6825

­1.6469 ­1.646 ­1.5166 ­1.5163 ­3.9556 ­3.955 ­3.412 ­3.4117

­0.4458 ­0.4448 ­0.325 ­0.3248 ­0.6329 ­0.6325 ­0.4895 ­0.4894

­0.1887 ­0.1887 ­0.2246 ­0.2246 ­0.8724 ­0.8723 ­0.7793 ­0.7793

0.3103 0.3103 0.3125 0.3125 0.8985 0.8985 0.7928 0.7928

­1.5238 ­1.5245 ­1.779 ­1.7791 ­2.2011 ­2.2016 ­2.5176 ­2.5177

0.3237 0.3238 0.3854 0.3854 1.4968 1.4967 1.3371 1.3371

1.035 1.0348 0.7131 0.7131 0.9699 0.9698 0.6689 0.6689

Coefficients on LMs corresponding to equations with expectational terms

0.008 0.008 0.0064 0.0064 0.0076 0.0076 0.0062 0.0062

­0.2037 ­0.2037 ­0.1633 ­0.1633 ­0.1943 ­0.1943 ­0.159 ­0.159

­0.2054 ­0.2054 ­0.1445 ­0.1444 ­0.1656 ­0.1656 ­0.1267 ­0.1267

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

­0.0995 ­0.0995 ­0.0799 ­0.0799 ­0.0952 ­0.0952 ­0.078 ­0.078

­0.0152 ­0.0152 ­0.0122 ­0.0122 ­0.0145 ­0.0145 ­0.0119 ­0.0119

0.048 0.048 0.0385 0.0385 0.0458 0.0458 0.0375 0.0375

0.235 0.235 0.1886 0.1886 0.2244 0.2244 0.1838 0.1838

­0.0597 ­0.0597 ­0.0479 ­0.0479 ­0.0571 ­0.0571 ­0.0468 ­0.0468

­0.0357 ­0.0357 ­0.0286 ­0.0286 ­0.0342 ­0.0342 ­0.028 ­0.028

­0.0635 ­0.0635 ­0.051 ­0.051 ­0.0608 ­0.0608 ­0.0498 ­0.0498

­0.0085 ­0.0085 ­0.0087 ­0.0087 ­0.0116 ­0.0116 ­0.0103 ­0.0103
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Appendix 1. The non-linear system
The main non-linear equations in non-stationary format
In this Appendix I put together the non-linear equations that conform the model
and their stationary transformation. To save space, I �rst leave out the policy
equations, identities and auxiliary variables, and include them when I list the
equations with the variables in stationary form.
Balance of Payments:

B�G
t

P ��Nt

+
B�B
t

P ��Nt

� R�CBt

P ��Nt

= (1 + iGt�1)
1

���Nt

B�G
t�1

P ��Nt�1
+
�
1 + iBt�1

� 1

���Nt

B�B
t�1

P ��Nt�1

�
�
1 + i��t�1

� 1

���Nt

R�CBt�1
P ��Nt�1

� TBt

P ��Nt

Trade Balance:
TBt

P ��Nt

=
p��t�4

(et=et�4)
�e�t=e�t�Xt �Nt

Imports:

Ntp
N
t = (1� aD) p

C
t Ct +

1� bD

bD
wtht

Central Bank balance:
BCB
t

Pt
= et

R�CBt

P ��Nt

� M0
t

Pt

Government foreign debt interest rate:

1 + iGt = (1 + i��t )�
��G
t

�
1 +

�G1
1� �G2 ((B

�G
t �R�CBt ) et= (YtP ��Nt ))

�
:

Fiscal:

et
B�G
t

P ��Nt

= (1+iGt�1)
et
���Nt

B�G
t�1

P ��Nt�1
�
�
Tt
Pt
�Gt

�
�
�
1 + i��t�1 �

1

�t

�
et
���Nt

R�CBt�1
P ��Nt�1

+it�1
BCB
t�1

�tPt�1

Bank foreign debt interest rate:

1 + iBt = (1 + i
��
t )�

��B
�
1 +

�B1
1� �B2 (etB

�B
t =YtP ��Nt )

�
Real marginal cost:

mct =
1

��t

�
1 + & ti

L
t�1
�
(wt)

bD �pNt �1�bD
Labor market clearing:

ht =
bD

�

�
pNt
wt

�1�bD
Qt

zt�t

Domestic goods market clearing:

Qt =
�
aD + e�Mt � pCt Ct +Gt + zt

�
bAetp

��
t

� 1

1�bA +
zt
2bB

�
iLt � it

�2
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Real GDP:

Yt = pCt Ct +Gt +
et�4p

��
t�4e�t Xt � pNt Nt

Consumption relative price:

pCt =
h
aD + (1� aD)

�
pNt
�1��Ci 1

1��C

Consumption MRER:

eCt =
et
pCt
:

Money market clearing:

M0
t

Pt
=

"
bM

aM + 1� 1
1+it

# 1
1+bM

pCt Ct

Transaction costs related marginal consumption expenditure multiplier:

e'Mt = 1 + cM + (1 + bM)

"
bM

aM + 1� 1
1+it

# �bM
1+bM

:

Transaction costs related consumption expenditure markup:

e�Mt = aM

"
bM

aM + 1� 1
1+it

# 1
1+bM

+

"
bM

aM + 1� 1
1+it

# �bM
1+bM

+ cM :

Loans:
Lt
Pt
= zt

1

bB
�
iLt � it

�
Deposits:

Dt

Pt
=
BCB
t

Pt
+
Lt
Pt
� St
Pt
B�B
t :

Productivity Growth:

�zt =
�
�zt�1

���z �
�z��t�1

�1���z �
z�t�1

���z exp�"�zt � ;
Exports:

Xt = zt�4
�
bAet�4p

��
t�4
� bA

1�bA zAt :

Trade Balance ratio:

tbrt =
etTBt

Yt

Dynamics of Consumption:

zCt
Ct � �Ct�1

� ��Et

�
zCt+1

Ct+1 � �Ct

�
= �te'Mt pCt
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Marginal utility of real income:

�t = � (1 + it)Et

�
�t+1
�t+1

�
Risk-adjusted uncovered interest parity:

it = Et�t+1

(
(1 + i��t )�

��B
t

"
1 +

�B1

(1� �B2 (etB
�B
t =YtP ��Nt ))

2

#
� 1
)

Loan market clearing:

iLt = it +
bB& t
bDzt

Et (wt+1ht+1)

Government tax collection policy:

Tt
Pt
= (Et

Tt+1
Pt+1

)�
t

t1��
t

Real interest rate:
rt =

1 + it
Et�t+1

Wage in�ation Phillips equation:

0 = Et

1X
j=0

(��W )
j �t+jht+jwt+j

�
�Wt+j

� t�1
8<:
 �

�Wt
�1�� � �W
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�1��
1� �W

! 1+ �
1��

�  

 � 1
�zHt+j (ht+j)

�

�t+jwt+j

�
�Wt+j

�1+ t�9=; :

Domestic in�ation Phillips equation:

0 = Et

1X
j=0

(��)j �
D

t+jQt+j (�t+j)
��1

8<:
 
(�t)

1�� � �D (�t�1)
1��

1� �D

! 1
1��

� �

� � 1mct+j�t+j

9=; :

Imported in�ation Phillips equation:

0 = Et

1X
j=0

(��N)
j �

N

t+jNt+j(�
N
t+j)

�N�1

�

8><>:
0@��Nt �1��N � �N

�
�Nt�1

�1��N
1� �N

1A 1

1��N

� �N

�N � 1
et+j
pNt+j

�Nt+j

9>=>; :

The non-linear equations in stationary format
Now I rewrite the model equations in terms of stationary variables. For this,
I de�ate the real variables by the permanent productivity shock zt, and add a
superscript � to the Lagrange multiplier to denote that it is in�ated by the same
factor. Hence I de�ne the following stationary variables:
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m0
t =

M0
t

ztPt
; dt =

Dt

ztPt
; `t =

Lt
ztPt

; bCBt =
BCB
t

ztPt
; tt =

Tt
ztPt

;

gt =
Gt

zt
; r�CBt =

R�CBt

ztP ��Nt

; b�Bt =
B�B
t

ztP ��Nt

; tbt =
TBt

ztP ��Nt

;

bCBt =
BCB
t

ztPt
; b�Gt =

B�G
t

ztP ��Nt

ct =
Ct
zt
; qt =

Qt

zt
; yt =

Yt
zt
;

qDXt =
QDX
t

zt
; ��t = �tzt; �

D�
t = �

D

t zt; �
N�
t = �

N

t zt xt =
Xt

zt
;

nt =
Nt

zt
; z�t =

z��t
zt
; �zt �

zt
zt�1

; :

The transformed equations are the following:
Interest rate feedback rule:

1 + it =

�
�z���

�

�1�h0
(1 + it�1)

h0

 e�Cte�T
!h1 �

yt
y

�h2 � tbrt

TBT

�h3 �tbrt�1

TBT

�h4
(or, alternatively) AR Central Bank bond policy:

bCBt =
�
bCBt�1

��� �
bCB
�1���

exp("b
CB

t )

(or, alternatively) AR Central Bank international reserves policy:
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�
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��rCB
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1��rCB exp("r
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t )

Nominal depreciation feedback rule:
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���N
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TBT
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�
�
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�CB
t =yt

CBT

�k5
exp("�t ):

(or, alternatively) Nominal depreciation rule:

�t = (�t�1)
�� ��T �1��� exp("�t )

(or, alternatively, and if not used above) AR Central Bank international reserves
policy:
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�
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��rCB
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t )

Balance of Payments:
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Trade Balance:

tbt =
p��4t

(et=e4;t)
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Fiscal:
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�
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Domestic goods market clearing:
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�
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�
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Transaction costs related marginal consumption expenditure multiplier:

e'Mt = 1 + cM + (1 + bM)

"
bM

aM + 1� 1
1+it

# �bM
1+bM

:

Transaction costs related consumption expenditure markup:

e�Mt = aM

"
bM

aM + 1� 1
1+it

# 1
1+bM

+

"
bM

aM + 1� 1
1+it

# �bM
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+ cM :

Loans:
`t =

1

bB
�
iLt � it

�
Deposits:

dt = bCBt + `t � etb
�B
t :

Productivity Growth:

�zt =
�
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���z �
�z��t�1

�1���z �
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���z exp�"�zt � ;
Identities:

z�t
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=
�z��t

�zt
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=
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��N
t

�t
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�Ct
�t
=
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=
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;
pNt
pNt�1

=
�Nt
�t

Exports:

xt =
zAte�zt �bAe4tp��4t � bA

1�bA :

Trade Balance ratio:

tbrt =
ettbt
yt

Auxiliary:

e�t = �t�t�1�1;t�1�2;t�1; �1;t = �t�1; �2;t = �1;t�1; �3;t = �2;t�1

e�Ct = �Ct �
C
t�1�

C
1;t�1�

C
2;t�1; �C1;t = �Ct�1; �C2;t = �C1;t�1; �C3;t = �C2;t�1e�t = �t�t�1�1;t�1�2;t�1; �1;t = �t�1; �2;t = �1;t�1; �3;t = �2;t�1e�zt = �zt�

z
t�1�

z
1;t�1�

z
2;t�1; �z1;t = �zt�1; �z2;t = �z1;t�1; �z3;t = �z2;t�1

e1;t = et�1; e2;t = e1;t�1; e3;t = e2;t�1; e4;t = e3;t�1

p��0;t = p��t ; p��1;t = p��t�1; p��2;t = p��1;t�1; p��3;t = p��2;t�1; p��4;t = p��3;t�1

Dynamics of Consumption:

�zt

�
zCt

ct�zt � �ct�1

�
� ��Et

�
zCt+1

ct+1�zt+1 � �ct

�
= ��t e'Mt pCt
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Marginal utility of real income:

��t = � (1 + it)Et

�
��t+1

�zt+1�t+1

�
Risk-adjusted uncovered interest parity:

it = Et�t+1

(
(1 + i��t )�

��B

"
1 +

�B1

(1� �B2 etb
�B
t =yt)

2

#
� 1
)

Loan market clearing:

iLt = it +
bB& t
bD

Et
�
�zt+1wt+1ht+1

�
Government tax collection policy:

tt = (Ettt+1)
�tt1��

t

Real interest rate:

rt =
1 + it
Et�t+1

Wage in�ation Phillips equation:

0 = Et

1X
j=0

(��W )
j ��t+jht+jwt+j

�
�Wt+j

� �1
8<:
 �

�Wt
�1�� � �W

�
�Wt�1

�1��
1� �W

! 1+ �
1��

�  

 � 1
�zHt+j (ht+j)

�

��t+jwt+j

�
�Wt+j

�1+ �9=; :

Domestic in�ation Phillips equation:

0 = Et

1X
j=0

(��)j �
D�
t+jqt+j (�t+j)

��1

8<:
 
(�t)

1�� � �D (�t�1)
1��

1� �D

! 1
1��

� �

� � 1mct+j�t+j

9=; :

(136)
Imported in�ation Phillips equation:

0 = Et

1X
j=0

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N�1

�

8><>:
0@��Nt �1��N � �N

�
�Nt�1

�1��N
1� �N

1A 1

1��N

� �N

�N � 1
et+j
pNt+j

�Nt+j

9>=>; :

Appendix 2: The recursive versions of the Phillips equations
In order to implement practically the nonlinear Phillips equations it is necessary to
get rid of the in�nite summations. In this Appendix I reformulate them recursively.
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Domestic in�ation
First, rewrite (136) as: 

(�t)
1�� � �D (�t�1)

1��

1� �D

! 1
1��

�Dt = 	
D
t : (137)

where

�Dt = Et

1X
j=0

(��D)
j �

D�
t+jqt+j (�t+j)

��1 ;

	Dt =
�

� � 1Et
1X
j=0

(��D)
j �

�
t+jqt+j (�t+j)

�mct+j:

Second, note that the in�nite sums involved in the de�nitions of �Dt and 	
D
t can

be written recursively:

Et

1X
j=0

(��D)
j �

D�
t+jqt+j (�t+j)

��1

= �
D�
t qt (�t)

��1 + Et

1X
j=1

(��D)
j �

D�
t+jqt+j (�t+j)

��1

= �
D�
t qt (�t)

��1 + ��DEt+1

1X
j=0

(��D)
j �

D�
t+1+jqt+1+j (�t+1+j)

��1 ;

�

� � 1Et
1X
j=0

(��D)
j �

D�
t+jqt+j (�t+j)

�mct+j

=
�

� � 1�
D�
t qt (�t)

�mct +
�

� � 1Et
1X
j=1

(��D)
j �

D�
t+jqt+j (�t+j)

�mct+j

=
�

� � 1�
D�
t qt (�t)

�mct +
�

� � 1��DEt+1
1X
j=0

(��D)
j �

D�
t+1+jqt+1+j (�t+1+j)

�mct+1+j

i.e.,

�Dt = �
�
t qt (�t)

��1 + ��D�
D
t+1

	Dt =
�

� � 1�
�
t qt (�t)

� + ��D	
D
t+1:

Third, using the de�nition of �t+j (51):

�
D�
t = �

D

t zt = �te'M (1 + it) zt = ��t e'Mt ;
I can now rewrite the de�nitions of �Dt and 	

D
t as well as their recursive formula-

tions in terms of the system�s variables:

�Dt = Et

1X
j=0

(��D)
j ��t+je'Mt+jqt+j (�t+j)��1 ;

	Dt =
�

� � 1Et
1X
j=0

(��D)
j ��t+je'Mt+jqt+j (�t+j)�mct+j:
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�Dt = ��t e'Mt qt (�t)��1 + ��DEt�
D
t+1: (138)

	Dt =
�

� � 1�
�
t e'Mt qt (�t)�mct + ��DEt	

D
t+1: (139)

Finally, note that (137) can be written as:

�t =

"
�D (�t�1)

1�� + (1� �D)

�
	Dt
�Dt

�1��# 1
1��

: (140)

The last 3 equations conform the recursive formulation of the Phillips equation
that I use for the non-linear system. The last equation is grouped with the static
equations and the �rst two with the dynamic equations.

Wage in�ation
In the case of wage in�ation, write:

0 = Et

1X
j=0

(��W )
j ��t+jht+jwt+j

�
�Wt+j

� t�1
8<:
 �

�Wt
�1�� � �W

�
�Wt�1

�1��
1� �W

! 1+ t�
1��

�  

 � 1
�zHt+j (ht+j)

�

��t+jwt+j

�
�Wt+j

�1+ t�9=; :

in the form:  �
�Wt
�1� � �W

�
�Wt�1

�1� 
1� �W

! 1+ �
1� 

�Wt = 	Wt : (141)

where

�Wt = Et

1X
j=0

(��W )
j ��t+jht+jwt+j

�
�Wt+j

� �1
;

	Wt =
 

 � 1Et
1X
j=0

(��W )
j ��t+jht+jwt+j

�
�Wt+j

� �1 �zHt+j (ht+j)�
��t+jwt+j

�
�Wt+j

�1+ �
=

 

 � 1Et
1X
j=0

(��W )
j �zHt+j (ht+j)

1+� ��Wt+j� (1+�) :
Second, the recursive versions of the in�nite sums involved in the de�nitions of �t
and 	t are:

Et

1X
j=0

(��W )
j ��t+jht+jwt+j

�
�Wt+j

� �1
= ��thtwt

�
�Wt
� �1

+ Et

1X
j=1

(��)j ��t+jht+jwt+j
�
�Wt+j

� �1
= ��thtwt

�
�Wt
� �1

+ ��Et+1

1X
j=0

(��)j ��t+1+jht+1+jwt+1+j
�
�Wt+1+j

� �1
;
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 � 1Et
1X
j=0

(��W )
j �zHt+j (ht+j)

1+� ��Wt+j� (1+�)
=

 

 � 1�z
H
t (ht)

1+� ��Wt � (1+�) +  

 � 1Et
1X
j=1

(��W )
j �zHt+j (ht+j)

1+� ��Wt+j� (1+�)
=

 

 � 1�z
H
t (ht)

1+� ��Wt � (1+�) + ��W
 

 � 1Et+1
1X
j=0

(��W )
j �zHt+1+j (ht+1+j)

1+� ��Wt+1+j� (1+�)
i.e.,

�Wt = ��thtwt
�
�Wt
� �1

+ ��WEt�
W
t+1

	Wt =
 

 � 1�z
H
t (ht)

1+� ��Wt � (1+�) + ��WEt	
W
t+1:

Finally, (141) can be written as:

�Wt =

"
�W

�
�Wt�1

�1� 
+ (1� �W )

�
	Wt
�Wt

� 1� 
1+ �

# 1
1� 

:

Imported goods in�ation
In the case of imported goods in�ation:

0 = Et

1X
j=0

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N�1

�

8><>:
0@��Nt �1��N � �N

�
�Nt�1

�1��N
1� �N

1A 1

1��N

� �N

�N � 1
et+j
pNt+j

�Nt+j

9>=>;
becomes 0@��Nt �1��N � �N

�
�Nt�1

�1��N
1� �N

1A 1

1��N

�Nt = 	
N
t : (142)

where

�Nt = Et

1X
j=0

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N�1

	Nt =
�N

�N � 1
Et

1X
j=0

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N et+j
pNt+j

The recursions are:

Et

1X
j=0

(��N)
j �

�
t+jnt+j(�

N
t+j)

�N�1

= �
N�
t nt(�

N
t )

�N�1 + Et

1X
j=1

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N�1

= �
N�
t nt(�

N
t )

�N�1 + ��NEt+1

1X
j=0

(��N)
j �

N�
t+1+jnt+1+j(�

N
t+1+j)

�N�1;
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�N

�N � 1
Et

1X
j=0

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N et+j
pNt+j

=
�N

�N � 1
�
N�
t nt(�

N
t )

�N et
pNt
+

�N

�N � 1
Et

1X
j=1

(��N)
j �

N�
t+jnt+j(�

N
t+j)

�N et+j
pNt+j

=
�N

�N � 1
�
�
tnt(�

N
t )

�N et
pNt
+ ��N

�N

�N � 1
Et+1

1X
j=0

(��N)
j �

�
t+1+jnt+1+j(�

N
t+1+j)

�N et+1+j
pNt+1+j

i.e.,

�Nt = �
N�
t nt(�

N
t )

�N�1 + ��N�
N
t+1

	Nt =
�N

�N � 1
�
N�
t nt(�

N
t )

�N et
pNt
+ ��N	

N
t+1:

Third, using the de�nition of �t+j (64):

�
N�
t = �

N

t zt = �te'M (1 + it) pNt zt = ��t e'Mt pNt ;
I rewrite the de�nitions of �Nt and 	Nt as well as their recursive formulations in
terms of the system�s variables:

�Nt = ��t e'Mt pNt nt(�Nt )�N�1 + ��NEt�
N
t+1

	Nt =
�N

�N � 1
��t e'Mt pNt nt(�Nt )�N et

pNt
+ ��NEt	

N
t+1:

Finally, (142) can be written as:

�Nt =

"
�N
�
�Nt�1

�1��N
+ (1� �N)

�
	Nt
�Nt

�1��N# 1

1��N

: (143)

Appendix 3. The log-linear system of equations
In this Appendix I list the log-linear approximation of the system equations. The
complete set of nonlinear equations are in Appendix 1.
Interest rate feedback rule:

bit = h0bit�1 + h1be�Ct + h2byt + h3ctbrt + h4ctbrt�1:
(or, alternatively) AR Central Bank bond policy:

bbCBt = ��bbCBt�1 + �1� ��
�bbCB + "b

CB

t

(or, alternatively) AR Central Bank international reserves policy:

bet + br�CBt = �r
CB �bet�1 + br�CBt�1

�
+
�
1� �r

CB
� byt + "r

CB

t

Nominal depreciation feedback rule:

b�t = k0b�t�1 + k1be�Ct + k2byt + k3ctbrt + k4ctbrt�1 + k5
�bet + br�CBt � byt�+ "�t
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(or, alternatively) AR Nominal depreciation rule:b�t = ��b�t�1 + �1� ��
�
�T + "�t

(or, alternatively, and if not used above) AR Central Bank international reserves
policy: bet + br�CBt = �r

CB �bet�1 + br�CBt�1
�
+
�
1� �r

CB
� byt + "r

CB

t

Balance of Payments:


BP1 br�CBt + 
BP2

�biGt�1 +bb�Gt�1�+ 
BP3

�biBt�1 +bb�Bt�1�
= 
BP4

btbt + 
BP5
bb�Gt + 
BP6

bb�Bt + 
BP7

�bi��t�1 + br�CBt�1

�
� 
BP8

�b�zt + b���Nt

�
Trade balance:

btbt = �
TB + 1��bxt + bp��4t � bet + bet�1 � be�t + be�t�� 
TBbnt (144)

Imports: bnt + bpNt = 
N
�bct + bpCt �+ �1� 
N

� �bh+ bwt�
Central Bank balance:

aCBbbCBt +
�
1� aCB

� bm0
t = br�CBt + bet

Government foreign debt interest rate:

biGt =bi��t + b���Gt + aG
�bet + �bG + 1�bb�Gt � bGbr�CBt � byt�

Fiscal:


F1

�bb�Gt + be�+ 
F2

h�
aF1 + 1

�bi��t�1 + aF1
b���t + br�CBt�1 + beti+ 
F3 btt

= 
F4

�biGt�1 +bb�Gt�1 + be�+ 
F5

�bit�1 +bbCBt�1 � b�zt � b��+ 
F6 bgt � 
F7
�b�zt + b���Nt

�
Bank foreign debt interest rate:

biBt =bi��t + b���Bt + aB
�bet +bb�Bt � byt� (145)

Real marginal cost:

cmct = bDbwt + �1� bD
� bpNt + 
MC

1
biLt�1 + 
MC

2 b& t �b�t (146)

Labor market clearing:

bht = �1� bD
� �bpNt � bwt�+ bqt �b�t (147)

Domestic goods market clearing:

bqt = 
Q1

�bct + bpCt + bQbe�Mt �+ 
Q2
1

1� bA
(bet + bp��t ) (148)

+
Q3

�biLt �bit�+ 
Q4 bgt
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Real GDP:

aY1 byt + �1� aY1
� �bpNt + bnt� = aY2

�bct + bpCt �+ aY3 bgt (149)

+
�
1� aY2 � aY3

� �bxt + bp��4t + be4t � be�t�
Consumption relative price: bpCt = aPCbpNt (150)

Consumption MRER: beCt = bet � bpCt
Money market clearing: bm0

t = bct + bpCt � �Mbit
Transaction costs related marginal consumption expenditure multiplier:

be'Mt = �'bit
Transaction costs related consumption expenditure markup:

be�Mt = ��bit
Loans: b̀

t =
�
1 + 
L

�
iLt � 
Lit

Deposits:


D1
bdt + 
D2 bet + �1� 
D1 � 
D2

�
b�Bt = 
D3

bbCBt +
�
1� 
D3

� b̀
t

Productivity growth:

b�zt = ��
zb�zt�1 + �1� ��

z� b�z��t�1 + ��zbz�t�1 + "�
z

t (151)

Domestic in�ation Phillips equation (static part):

b�t � �Db�t�1 = (1� �D)
�b	Dt � b�Dt �

Wage in�ation Phillips equation (static part):

�Wt � �W�
W
t�1 = (1� �W )

�b	Wt � b�Wt �
Imported goods in�ation Phillips equation (static part):

�Nt � �N�
N
t�1 = (1� �N)

�b	Nt � b�Nt �
Identities: bz�t = bz�t�1 + b�z��t � b�zt (152)

bet = bet�1 + b�t � b�t + b���Nt (153)b�Ct = b�t + bpCt � bpCt�1
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bwt = bwt�1 + b�Wt � b�t � b�ztbpNt = bpNt�1 + b�Nt � b�t (154)

Exports: bxt = bA

1� bA
�bet�4 + bp��t�4�� be�zt + bzAt :

Trade Balance ratio:
tbbrt = bet + btbt � byt

Auxiliary:

be�t = b�t + b�t�1 + b�1;t�1 + b�2;t�1; b�1;t = b�t�1; b�2;t = b�1�1; b�3;t = b�2;t�1
be�Ct = b�Ct + b�Ct�1 + b�C1;t�1 + b�C2;t�1; b�C1;t = b�Ct�1; b�C2;t = b�C1;t�1; b�C3;t = b�C2;t�1be�t = b�t + b�t�1 + b�1;t�1 + b�2;t�1; b�1;t = b�t�1; b�2;t = b�1�1; b�3;t = b�2;t�1be�zt = b�zt + b�zt�1 + b�z1;t�1 + b�z2;t�1; b�z1;t = b�zt�1; b�z2;t = b�z1;t�1; b�z3;t = b�z2;t�1be1t = bet�1; be2;t = be1;t�1; be3;t = be2;t�1; be4;t = be3;t�1:bp��0;t = bp��t , bp��1;t = bp��0;t�1, bp��2;t = bp��1;t�1, bp��3;t = bp��2;t�1, bp��4;t = bp��3;t�1.

Dynamics of Consumption:

(1 + aC)
�b�z

t
+ bzCt � �(1 + �C) �bct + b�zt �� �Cbct�1�	 (155)

�aC
�
EtbzCt+1 � �(1 + �C)Et �bct+1 + b�zt+1�� �Cbct�	 = b��t + be'Mt + bpCt

Marginal utility of real income:

b��t = Et

�b��t+1 � b�t+1 � b�zt+1�+bit
Risk-adjusted uncovered interest parity:

bit = 
B1 Et
b�t+1 + 
B2

hbi��t + b���Bt + aRP
�bet +bb�Bt � byt�i (156)

Loan market clearing:

biLt = 
Lbit + �1� 
L
� h
Et

�b�z
t+1
+ bwt+1 + bht+1�+b& ti : (157)

Government tax collection policy:

btt = �tEtbtt+1; �
�t > 1

�
Real interest rate: brt =bit � Etb�t+1
Domestic in�ation Phillips equation (dynamic part):

b�Dt = 
D
hb��t + be'Mt + bqt + (� � 1) b�ti+ �1� 
D

�
Etb�Dt+1:
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b	Dt = &D
hb��t + be'Mt + bqt + �b�t + cmcti+ �1� &D

�
Etb	Dt+1:

Wage in�ation Phillips equation (dynamic part):

b�Wt = 
W
hb��t + bht + bwt + ( � 1) b�Wt i+ �1� 
W

�
Etb�Wt+1b	Wt = &W

hbzHt + (1 + �)bht +  (1 + �) b�Wt i+ �1� &W
�
Etb	Wt+1:

Imported goods in�ation Phillips equation (dynamic part):

b�Nt = 
N
hb��t + be'Mt + bpNt + bnt + ��N � 1� b�Nt )i+ �1� 
N

�
Etb�Nt+1b	Nt = &N

hb��t + be'Mt + bpNt + bnt + �Nb�Nt + �bet � bpNt �i+ �1� &N
�
Etb	Nt+1:

Note that the static and dynamic parts of the log-linear Phillips equations can
be collapsed to the usual reduced form equations:
Wage in�ation Phillips equation:

b�Wt �b�Wt�1 = �Et
�b�Wt+1 � b�Wt �+(1� �W ) (1� ��W )

�W (1 +  �)

�
�bht + bzHt � b��t � bwt� (158)

Domestic in�ation Phillips equation:

b�t � b�t�1 = � (Etb�t+1 � b�t) + (1� �) (1� ��)

�
cmct (159)

Imported goods in�ation Phillips equation:

b�Nt � b�Nt�1 = �
�
Etb�Nt+1 � b�Nt �+ (1� �N) (1� �N�)

�N

�bet � bpNt � (160)

However, for future second order approximations it is useful to have the recursive
Phillips equations, so I maintain them throughout.

Appendix 4. Model parameters and great ratios
The non-policy benchmark parameters and great ratios of the model are in Table
A1 below. Parameters followed by (**) are those that are estimated. All values
followed by (*) are imposed. The remaining steady state values of endogenous
variables or great ratios and values for parameters are derived from imposed or
estimated values.
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Table A1

Steady state values of variables, great ratios and parameters

REST OF THE WORLD
Risk-free interest rate i�� 1:060:25 � 1

In�ation (*) ���; ���N 1:0230:25

Productivity growth (*) �z�� 1:0330:25

HOUSEHOLDS
Intertemporal discount factor (*) � 0:999
Inverse of labor supply elasticity (*) � 0:7

Share of domestic goods in consumption (*) aD 0:8610526316
Habit persistence (**) � 0:8091

Labor parameter in utility � 4:06163527� 10�6
Probability of not optimizing wages (**) �W 0:5808
DOMESTIC SECTOR FIRMS

Fraction of factors bill that is bank �nanced & 0:30537629
Production function parameter (**) bD 0:8903

Probability of not optimizing prices (**) �D 0:6133
PRIMARY SECTOR FIRMS
Production function parameter (**) bA 0:0729
IMPORT SECTOR FIRMS

Probability of not optimizing prices (**) �N 0:5889
EXOGENOUS GREAT RATIOS
Government expenditures/GDP (*) G=Y 0:16

Imports/GDP (*) pNN=Y 0:22
Cash/GDP (*) m0=Y 0:08
Loan/GDP (*) `=y 0:23

Central Bank bonds/GDP bCB=y 0:05
Bank Foreign debt/GDP (*) eb�B=y 0:0658

BANKS
Foreign debt interest rate iB 0:020430244

Loan rate (*) iL 1:120:25 � 1
Cost function parameter bB 2:6471135748� 10�5

Foreign debt exogenous risk premium (*) ���B 1:005
Foreign debt endogenous risk premium elasticity (*) "B 1:15745156
Foreign debt endogenous risk premium parameter �B1 0:00189918626
Foreign debt endogenous risk premium parameter �B2 8:15334608955

MONEY DEMAND
Transactions cost function interest elasticity (*) "M 0:85

Transactions cost function parameter aM 1:04572957542459
Transactions cost function parameter bM 0:07222273891212
Transactions cost function parameter cM �0:70487661051072

Money/consumption ratio $ 0:08091690836698
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Table 1 (continued)
POLICY

Target in�ation rate (*) �T 1:0650:25

Target International Reserves/GDP (*) 
CBT 0:13
Target Gov. Debt/GDP (*) 
GT 0:20

OTHER RATES
Central Bank bond interest rate i 0:025172608
Nominal depreciation rate � 1:0410557180:25

LEV EL
GDP (*) y 585:5

ELASTICITIES OF SUBSTITUTION
ES for labor types (**)  7:3116
ES for domestic goods � 1:902214507

ES for imported goods (**) �N 1:1754
ES between domestic and imported goods (**) �C 0:9895

PRODUCTIV ITY GROWTH
Coef: on relative productivity level (**) �Z 0:0151

Persistence (**) �z 0:6733
GOV ERNMENT

Foreign debt exogenous risk premium (*) ���G 1:005
Foreign debt endogenous risk premium elasticity (*) "G 0:833397207
Foreign debt endogenous risk premium parameter �G1 6:006093674� 10�4
Foreign debt endogenous risk premium parameter �G2 6:49377796598

PRODUCTIV ITY GROWTH
Coef. on relative productivity level (**) �Z 0:0151

Persistence (**) ��
z

0:6733

Appendix 5. Analysis of the steady state and reference calibration of the
parameters
The equations with all variables at their steady state levels
Underlying any consistent dynamic model is a static theory of how the macro-
economy functions in the �long run�. In this appendix I consider this underlying
theory implicit in ARGEMmy. For this, I �rst replace the stationary variables in
the nonlinear equations by their non-stochastic steady state values (which I de-
note by the same variables without any time index). For simplicity, I normalize
the consumption shock, the labor shock, the transitory technology shock, and the
harvest shock to unity in the steady state: zC = zH = � = zA = 1: I have assumed
in section 2.8 that the technology levels and growth rates are the same in the SOE
as in the RW (z� = 1 and �z = �z��) so there is no need to now consider the new
equations introduced there. The remaining model equations with the variables at
their SS values are the following:
Interest rate feedback rule:

1 + i =
�z���

�

�
�C

�T

� 4h1
1�h0

(161)

(or, alternatively) AR Central Bank bond policy:

bCB = bCB (162)
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(or, alternatively) AR Central Bank international reserves policy:

erCB

y
= 
TBT

Nominal depreciation feedback rule:

� =
� �

���N

���C
�T

� 4k1
1�k0

�
er�CB=y


CBT

� k5
1�k0

: (163)

(or, alternatively) Nominal depreciation rule:

� = �T

(or, alternatively if not used above) AR Central Bank international reserves policy:

erCB

y
= 
TBT

Balance of Payments:

eb�G

y

�
1 + iG

�z�����N
� 1
�
+
eb�B

y

�
1 + iB

�z�����N
� 1
�
� er

�CB

y

�
1 + i��

�z�����N
� 1
�
=
e

y
tb (164)

Trade Balance:

tb =
p��

(���N)4
x� n (165)

Trade Balance ratio:
tbr =

e

y
tb

Exports:

x =
zA

(�z)4
�
bAep��

� bA

1�bA : (166)

Imports:

pNn = (1� aD) p
Cc+

1� bD

bD
wh (167)

Central Bank balance:
bCB = er�CB �m0

Government foreign debt interest rate:

1 + iG = (1 + i��)���G
�
1 +

�G1
1� �G2 e (b

�G � r�CB) =y

�
(168)

Fiscal:

(t� g) =

�
1 + iG

�z�����N
� 1
�
eb�G �

�
1 + i�� � 1=�
�z�����N

�
er�CB +

i

�z���
bCB (169)

Bank foreign debt interest rate:

1 + iB = (1 + i��)���B
�
1 +

�B1
1� �B2 eb

�B=y

�
(170)
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Real marginal cost:

mc =
1

�

�
1 + &iL

�
wb

D �
pN
�1�bD

(171)

Labor market clearing:

h =
bD

�

�
pN

w

�1�bD
q: (172)

Domestic goods market clearing:

q = [aD + e�M ] pCc+ g +
�
bAep��

� 1

1�bA +
1

2bB
�
iL � i

�2
(173)

Real GDP:

y = pCc+ g +
ep��

�4
x� pNn (174)

Consumption relative price:

pCt =
h
aD + (1� aD)

�
pNt
�1��Ci 1

1��C
(175)

Consumption MRER:
eC =

e

pC
:

Money market clearing:

m0 =

"
bM

aM + 1� 1
1+it

# 1
1+bM

pCc

Transaction costs related marginal consumption expenditure multiplier:

e'M = 1 + cM + (1 + bM)

"
bM

aM + 1� 1
1+i

# �bM
1+bM

:

Transaction costs related consumption expenditure markup:

e�M = aM

"
bM

aM + 1� 1
1+i

# 1
1+bM

+

"
bM

aM + 1� 1
1+i

# �bM
1+bM

+ cM :

Loans:
` =

1

bB
�
iL � i

�
Deposits:

d = bCB + `� eb�B:

Productivity Growth:
�z = �z��

Identities:
� = �=���N (176)

�C = �; �W = ��z;
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�N = �; �z = �z�� (177)

e� = �4; e�C = ��C�4 ; e�T = ��T �4 ;e���N =
�
���N

�4
; e� = �4; e�z = (�z)4 :

Dynamics of Consumption:

��e'M (1 + i) pCc = �z�� � ��

�z�� � �
� z > 1 (178)

Marginal utility of real income:

�z��� = � (1 + i) (179)

Risk-adjusted uncovered interest parity:

i = �

(
(1 + i��)���B

"
1 +

�B1

(1� �B2 eb
�B=y)

2

#
� 1
)

(180)

Loan market clearing:

iL = i+
bB&

bD
�z��wh (181)

Government tax collection policy:
t = t

Real interest rate:
r =

1 + i

�
Wage in�ation Phillips equation:

w =
 

 � 1
�h�

��
(182)

Domestic in�ation Phillips equation:

1 =
�

� � 1mc: (183)

Imported in�ation Phillips equation:

pN =
�N

�N � 1
e (184)

A �rst glance at these equations shows that several of the steady state variables
are readily determined. All three domestic in�ation rates for goods are equal and
(179) gives the SS interest rate:

1 + i =
�z���

�
: (185)

In the case of an interest rate feedback rule, combining this equation with (161)
yields

�C = � = �N = �T :
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And using this and (176) in (163) shows that the Central Bank attains its foreign
reserves target:

er�CB=y = 
CBT :

(183) shows that the real marginal cost in the domestic sector equals the inverse
of the markup factor:

mc =
� � 1
�

: (186)

Reference calibration of parameters and great ratios
In the rest of this section I build a reference calibration of the structural parameters
and calculation of the NSS for ARGEMmy. I used this process as input to produce
a MATLAB m-�le that generates the non-stochastic steady state. When I use
Dynare for Bayesian estimation this �le interacts with the Dynare mod-�le that
implements the model. When I don�t use Dynare, as in the analysis of optimal
monetary and exchange policies, it becomes a substantial part of one of the main
three m-�les in which I organize my code.
In the construction of this m-�le, however, many changes were introduced to

better re�ect my dogmatic priors. Hence, some of the calibrations below that ap-
pear imposed but for which I do not have strong priors were later made endogenous
and made to depend on parameters that were estimated with Bayesian methods.
Hence, many of the calibrations below are only illustrative of the procedure used
in the calculation of the steady state.
The assumptions on the RW�s variables are similar to those in ARGEM. Using

annual rates, the SS gross growth rate is assumed to be (�z��)4 = 1:033, and the
foreign (export and "domestic") in�ation rates are:

�
���N

�4
= (���)4 = 1:023. The

riskfree nominal interest is assumed to be (1 + i��)4 = 1:06 which implies a real
(riskfree) annual interest rate of:�

1 + i��

�z�����

�4
=

1:06

1:033 � 1:023 = 1:003066924:

I also assume that the intertemporal discount rate is �4 = 0:9994; and that the SS
detrended annual GDP level is 10% above the 2005 level (in billions of pesos and
in terms of 1993 prices):

y = 532:270 � 1:10 = 585:5:
The calibrations that depend on the balance of payments or the banking sys-

tem, however, must su¤er some signi�cant changes due to the simpli�cations in
ARGEMmy vis a vis ARGEM. I use the Central Bank and Bank balance sheet
constraints to calibrate the ratios to GDP of assets and liabilities:

er�CB

y
=

m0

y
+
bCB

y
0:13 = 0:08 + 0:05:

bCB

y
+
`

y
=

eb�B

y
+
d

y
0:05 + 0:23 = 0:0658 + 0:2142
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The assumptions on Central Bank international reserves and peso cash is the same
as in ARGEM (except that since banks do not hold cash here, households have all
the cash ). The same can be said for the assumption on loans to GDP (except that
here �rms obtain all the loans since the government does not receive bank credit)
and on Banks�foreign debt to GDP. Hence, the ratio of Central Bank bonds to
GDP must be 5%, which is somewhat larger than in ARGEM, and the deposits to
GDP ratio is 21.42, slightly lower than in ARGEM.
In the SS the UIP condition (69) is:

i
�
+ 1

1 + i��
=
���N

�
�z��

�
� 1

�

�
+ 1

1 + i��
= ���B

�
1 + 'B

�
eb�B

y

��
: (187)

Given the assumptions on �z��, �, i��, and ���N , it is readily seen that the
minimum SS rate of in�ation that guarantees a positive risk premium (i.e. the
r.h.s. of (187) greater than one) is:

� >
1

�z��

�
� i��

���N

=
1

1:0330:25

0:999
� 1:060:25�1

1:0230:25

= 1:005461341;

�4 > 1: 022024974:

I choose a signi�cantly larger SS in�ation (more in line with the policy environ-
ment):

�4 = 1:065; � = 1:015868285;

which implies that the annual nominal interest rate and nominal rate of currency
depreciation are:

(1 + i)4 =

�
�z���

�

�4
= 1:104556599; 1 + i = 1:025172608

�4 =
� �

���N

�4
= 1:041055718; � = 1:010109588:

The choice for SS in�ation also implies that the value of the gross UIP risk premium
is:

���B [1 + 'B (0:0658)] =
i
�
+ 1

1 + i��
(188)

=
0:025172608
1:010109588

+ 1

1:060:25
= 1:010098638:

I make the further assumption that in the SS the value of the exogenous compo-
nent of the risk premium for banks as well as the government is half of a percentage
point: �

���B
�4

=
�
���G

�4
= 1:005 (189)

���B = ���G = (1:005)0:25 = 1: 001247663:

Hence, using (99) yields:
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'B (0:0658) =
�B1

(1� 0:0658�B2 )
2 =

1:010098638

���B
� 1 (190)

=
1:010098638

(1:005)0:25
� 1 = 0:008839945664:

Additional information on the coe¢ cients in the risk premium can be obtained
using the balance of payments (164), or country resource constraint, which ex-
pressed in terms of GDP, and using (168), (170), (98) and the assumptions made
above is:

e

y
tb = 
GT

"�
1:06 � 1:005
1:033 � 1:023

�0:25�
1 +

�G1
1� (
GT � 
CBT )�G2

�
� 1
#
(191)

+0:0658

"�
1:06 � 1:005
1:033 � 1:023

�0:25�
1 +

�B1
1� 0:0658�B2

�
� 1
#

�
CBT
"�

1:06

1:033 � 1:023

�0:25
� 1
#
:

The Government�s foreign debt (i.e. its debt to non-residents) amounted to US$
60.9 billion at the end of 2005 (representing 33.5% of GDP) and declined to US$
56.2 billion at the end of 2006 (26.4% of GDP). I assume that the Government
aims for and achieves a SS foreign debt of 20% of GDP. Hence eb�G

y
� 
GT = 0:20.

As seen above, I assume that the Central Bank aims for and achieves international
reserves amounting to 13% of GDP. Hence er�CB

y
� 
CBT = 0:13.

As background information for my assumption below for the interest rate the
Government faces on its external debt, it is known that this foreign debt has an
average maturity of 14.36 years (weighted average of US$ 14 bn. debt to inter-
national organizations with average maturity of 5.7 years and US$ 46 bn. debt
mainly in bonds with average maturity of 17 years). Also, the weighted average
interest rate on the Government�s foreign debt stands at 5.24% (weighted average
of 5.6% on its debt to international organizations and 5% on its bond debt). I am
simplifying by assuming that all the foreign debt is dollar denominated whereas in
fact only around 77% of it is. My assumption is that in the SS the government
faces an average 7% annual interest rate abroad. Hence,

1 + iG = 1:070:25 = 1:017058525:

Therefore, (168) and (101) imply that �G1 and �
G
2 must satisfy:

1 + iG = 1:070:25 = (1:06 � 1:005)0:25
�
1 +

�G1
1� 0:07�G2

�
i.e.:

pG(0:07) =
�G1

1� 0:07�G2
=

�
1:07

1:06 � 1:005

�0:25
� 1 = 0:001101156: (192)
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In order to calibrate these coe¢ cients, I use the fact that �G2 de�nes the elasticity

"G (0:07) �
1

1
�B2 (0:07)

� 1
(193)

and �G1 de�nes the level of the risk premium function. In fact, the function

�G1
1� x�G2

crosses the y axis at x = �G1 and tends to in�nity as x ! 1=�G2 . To obtain an
elasticity of, say, "G = 1, I need

�G2 =
1

0:07
�
1
"G
+ 1
� = 7:142857143;

Then (192) gives:

�G1 =
�
1� 0:07�G2

� � 1 + iG

(1 + i��)���G
� 1
�
= 0:0005505780000

(which implies that even a very small positive net debt would command an endoge-
nous risk premium of around 0.05%). I will use these calibrations in the sequel.
Also, the �scal balance equation (169) gives the primary surplus needed to sustain
the government debt:

1

y
(t� g) =

�
1 + iG

�z�����N
� 1
�

GT �

�
1 + i�� � 1=�
�z�����N

�

CBT +

i

�z���

bCB

y

=

�
1:070:25

(1:033 � 1:023)0:25
� 1
�
0:2�

�
1:060:25 � 1

1:010109588

(1:033 � 1:023)0:25
�
0:13

+
0:025172608

(1:033 � 1:065)0:25
0:05

= �0:001312188863

I also assume that SS government expenditures are 16% of GDP (13% for public
consumption and 3% for public investment). Hence:

t

y
= 0:1586878111; t = 92:9117134:

The balance of payments (191) hence yields:

e

y
tb = 0:20

"�
1:07

1:033 � 1:023

�0:25
� 1
#

+0:0658

"�
1:06 � 1:005
1:033 � 1:023

�0:25�
1 +

�B1
1� 0:0658�B2

�
� 1
#

�0:13
"�

1:06

1:033 � 1:023

�0:25
� 1
#

= 0:0006565601244 + 0:06593255209
�B1

1� 0:0658�B2
;
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or:

pB (0:0658) � �B1
1� 0:0658�B2

(194)

= 15:1670149
e

y
tb� 0:00995805719:

Therefore, (70), (100), (190), and (194) imply:

'B (0:0658)

pB (0:0658)
= 1 + "B (0:0658) =

1

1� �B2 (0:0658)
(195)

=
0:008839945664

15:1670149 e
y
tb� 0:00995805719: :

As the following �gure illustrates, to have both a positive elasticity as well as a risk
premium that is greater than one it is necessary that the trade balance to GDP
ratio fall in the following interval:

6:565601244� 10�4 < e

y
tb < 1:239400302� 10�3

0.001 0.002 0.003 0.004

­5

0

5

10

15

20

e*tb/y

elasticity

To calibrate �B1 and �
B
2 I �rst choose "B = 1. Then (99), (100), (190) and (194)

imply

�B1 =
'B

("B + 1)
2 =

0:008839945664

4
= 0:002209986416;

�B2 =
1


B

�
1� 1

"B + 1

�
=

1

0:0658

1

2
= 7:598784195;

pB (0:0658) � �B1
1� 0:0658�B2

=
0:002209986416

1� 0:0658 (7:598784195) = 0:004419972832;

etb=y = 0:0006565601244 + 0:06593255209 � 0:004419972832
= 9:479802134� 10�4:

These are the calibrated values I use in the sequel. From (170) I now obtain the
bank foreign �nancing rate:

1 + iB = (1:06 � 1:005)0:25 � (1 + 0:004419972832) = 1:020430244:
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The following graph shows the bank risk premium as it is found in the balance
of payments equation (the lower curve) and in the UIP equation (the upper curve)
The vertical distance between them is the elasticity of the risk premium function
times the gross risk premium in the balance of payments. The coe¢ cients �B1 and
�B2 employed for the graph are the ones calculated above.
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I assume as in ARGEM that SS imports are 22% of GDP. Hence, (174) and
(166) yield:

1 =
pCc

y
+
g

y
+

1

(�z���)4

�
bAep��

� 1

1�bA

bAy
� pNn

y

=
pCc

y
+ 0:16 +

1

1:033 � 1:065

�
bAep��

� 1

1�bA

bA585:5
� 0:22

This gives: �
bAep��

� 1

1�bA

585:5bA
= 1:033 � 1:065

�
1 + 0:22� 0:16� pCc

y

�
(196)

Also, (165), (166), (167) and (184) imply:

e

y
tb = 9:479802134� 10�4 =

�
bAep��

� 1

1�bA

1:033 � 1:023 � 585:5bA �
e

pN
pNn

y

=
1:065

1:023

�
1 + 0:22� 0:16� pCc

y

�
�
�
1� 1

�N

�
0:22

=
1:065

1:023

�
1:06� pCc

y

�
� 0:22

�
1� 1

�N

�
:

In particular, given the trade balance ratio, there is an inverse relation between
the steady state monopolistic markup for imported goods (�N=

�
�N � 1

�
) and the

steady state consumption ratio (absorption ratio, since there is no investment here).
Assume, for example, pCc=y = 0:855. Then

�N = 29:21042381
�N

�N � 1
= 1:03544789;
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and (196) gives:�
bAep��

� 1

1�bA

bA
= 1:033 � 1:065 � 585:5 (1 + 0:22� 0:16� 0:855) (197)

= 132:0476540:

From (81), the share of inputs in imports is:

pNnD

pNn
= 1� (1� aD)

pCc=y

pNn=y
:

Then, assuming as in ARGEM, that 46% of imports are inputs (and hence, 54% are
for private consumption (absorption)), the share of imports and domestic goods in
consumption (absorption) expenditures are:

1� aD = aN = 0:54
0:22

0:855
= 0:1389473684; aD = 0:8610526316;

and the ratio of imported inputs to GDP is:

pNND

Y
=
pNND

pNN

pNN

Y
= 0:46 (0:22) = 0:1012: (198)

Given previous assumptions, the SS cash/consumption ratio is:

$ � m0=y

pCc=y
=
0:08

0:855
= 0:09356725146:

I now use the assumed functional form for the transactions cost function (93) and
the resulting functional form for the gross interest rate elasticity (97), as well as
additional assumptions, to calibrate the three parameters involved. First, assuming
that the SS gross interest rate elasticity of private demand for cash is 0.85 yields:14

"M = 0:85 =
$1+bM

(1 + bM) bM (1 + i)
=

(0:09356725146)1+bM

(1 + bM) bM (1:025172608)
:

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

bM

varepsilon_M

14A rough calculation for the elasticity of Argentina�s currency demand (as a fraction of ab-
sorption) with respect to the gross interest rate during the period 1994-2005 yields 0.84, which is
equivalent to an elasticity with respect to the interest rate of 0.09. The latter �gure is much lower
than the typical estimate for the U.S. and other developed countries, which is in a neighborhood
of 0.5. This may be due (at least partly) to the much smaller fraction of the population that uses
the banking system in Argentina.
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Hence:
bM = 0:08089510761:

Second, I use the cash demand function (as a ratio of private absorption) to obtain
the value for aM :

$ = 0:09356725146 =

 
bM

aM + 1� 1
1+i

! 1
1+bM

=

�
0:08089510761

aM + 1� 1
1:025172608

� 1
1+0:08089510761

;

aM = 1:022645002:

Finally, I calibrate the remaining parameter in the transactions cost function, cM ,
so that the SS transactions cost in terms of domestic goods �M is only 0.01% of
private consumption (which in units of GDP is 0:05006025 = 0:0001(0:855(585:5)):

0:05006025 = �M � aM$ +$�bM + cM = 1:022645002 � 0:09356725146 (199)

+0:09356725146�0:08089510761 + cM :

which implies:
cM = �1:256868176:

These calibrations imply that in the SS the total e¤ect on expenditure (i.e., includ-
ing transactions cost related expenditures) of a marginal increase in consumption
is:

'M ($) = 1 + cM + (1 + bM)$
�bM = 1� 1:256868176

+ (1 + 0:08089510761) 0:09356725146�0:08089510761

= 1:052357748:

Now I use the bank loan supply function (68) to calibrate both the loan rate
and the coe¢ cient in the bank cost function. Dividing this expression by GDP and
using the assumed loan to GDP ratio gives:

0:23 =
`

y
=

1

bB � 585:5
�
iL � i

�
:

I assume that the loan rate is�
iL
�4
= 0:12; iL = 0:028737345

which implies:

bB =
1

0:23 � 585:5 (0:028737345� 0:025172608) = 2:647114692� 10
�5:

Under the assumption that the share of wage income is 0.7129, which is the
sum of wage income and rent income from physical capital (which does not exist
here) in ARGEM, I use (47) and (198) to calibrate the domestic sector production
function:15

wh

y
= 0:7129 =

bD

1� bD
pNnD

y
=

bD

1� bD
0:1012

bD = 0:8756909471:
15Since I estimate bD, in the m-�le in which I implement all this I do the opposite: I assume

a value for bD and obtain the resulting wage share. My prior for bD is hence implicitly my prior
for the wage ratio. The same can be said for other estimated parameters which are intimately
related to great ratios.
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And dividing the SS loan demand (48) by GDP and using the previous assumptions
I obtain the fraction of domestic �rm cost that is bank �nanced:

& =
`=y

wh=y

bD

�z��
=

0:23

0:7129

0:8756909471

1:0330:25
= 0:280236694:

As in ARGEM, I use INDEC�s 1997 input-output table to calibrate the domestic
sector inputs used by the primary producing sector (given by (56)) as 3.9% of GDP:

qDX

y
=

�
bAep��

� 1

1�bA

585:5
= 0:039:

Along with (196), this equation yields:

�
bAep��

� 1

1�bA = 132:047654bA = 0:039 � 585:5

bA =
0:039 � 585:5
132:047654

= 0:1729262074;

and hence I obtain the SS value of ep��:

�
bAep��

� 1

1�bA

bA
=

(0:1729262074ep��)
1

1�0:1729262074

0:1729262074
= 132:047654

ep�� = 76:87667886

I can now use the domestic goods market clearing equation (173) to obtain the
domestic output to GDP ratio:

q

y
= [aD + e�M ] pCc

y
+
g

y
+

�
bAep��

� 1

1�bA

y
+

�
iL � i

�2
2ybB

= (0:8610526316 + 0:05006025) 0:855 + 0:16 + 0:039

+
(0:028737345� 0:025172608)2

2 � 585:5 � (2:647114692� 10�5)
= 0:9784114585;

and (43) to obtain marginal cost:

mc =

�
1 + &iL

� �
wh
y
+ pNnD

y

�
q=y

=
(1 + 0:280236694 � 0:028737345) (0:7129 + 0:1012)

0:9784114585
= 0:8387638459:

Hence, using (186), the markup in the domestic goods sector is:

�

� � 1 =
1

mc
= 1:192230691;
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and the elasticity of substitution between varieties of domestic goods is:

� = 6:202082949:

Furthermore, under the assumption that � = 0:2 (178) directly gives the SS
value of the marginal utility of real income:

z � �z�� � ��

�z�� � �
=
1:0330:25 � 0:999 � 0:2

1:0330:25 � 0:2 = 1:000247479;

�� =
ze'M pCc
y
y
=

1:000247479

1:052357748 � 0:855 � 585:5 = 0:00189867682:

(182) and the assumption on labor share gives the SS supply of labor, and hence
the real wage, in terms of three related parameters:

h =

�
0:7129 � 585:5 � 0:00189867682

s �

� 1
�+1

=

�
0:7925133058

s �

� 1
�+1

:

Assuming � = 1 and that the steady state wage gross markup is s = 1:1, I
calibrate � so that the h can be interpreted as the number of hours worked in a
quarter. Let the number of hours be 528 (=8 hours, 22 days per month, 3 months).
Hence

�
0:7925133058

1:1�

� 1
1+1

= 528 = h;

� = 2:584318475� 10�6

 = 11:0:

The SS real wage is hence:

w =
0:7129 � 585:5

528
= 0:7905358902:

Now, labor market equilibrium yields the MRER, and hence the domestic terms
of trade:

528 = h =
bD

�

 
�
��1e

w

!1�bD
q

=
0:8756909471

0:6869983047

�
1:03544789e

0:7905358902

�1�0:8756909471
0:9784114585 � 585:5;

e = 0:05624118063;

pN = 1:03544789 � 0:05624118063 = 0:05823481181:
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Also, (175) gives a relation between pC and �C :

pC =
�
0:8610526316 + (1� 0:8610526316) (0:05823481181)1��

C
� 1

1��C

Assuming �C = 1:1 gives

pC = 0:6396589143

eC = e=pC = 0:08792370336:

Hence, the SS consumption index is:

c =
0:855 � 585:5

pC
=
0:855 � 585:5
0:6396589143

= 782:6084946:

Finally, the external terms of trade is:

p�� =
ep��

e
=

76:87667886

0:05624118063
= 1366:910829:

For the steady state of the recursive form of the Phillips equation in the domestic
sector, (138) and (139) yield:

�D =
1

1� ��D
��e'Mq���1

	D =
�

� � 1
1

1� ��D
��e'Mq��mc:

Hence,
	D

�D
=

�

� � 1�mc:

Inserting this in the SS version of (140) and eliminating � gives, as in (186):

�

� � 1mc = 1:

Numerically, assuming �D = 0:5 the steady states for the two new variables are:

�D =
1

1� ��D
��e'Mq���1

=
1

1� 0:999 � 0:50:00189867682 � 1:052357748

�0:9784114585 � 585:5 �
�
1:0650:25

�6:202082936�1
= 2:482147188;

	D =
�

� � 1
1

1� ��D
��e'Mq��mc

= 1:192230691
1

1� 0:999 � 0:50:00189867682 � 1:052357748

�0:9784114585 � 585:5 �
�
1:0650:25

�6:202082936 � 0:8387638459
= 2:521534606:
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For the steady state of the recursive form of the Phillips wage equation I assume
that �W = 0:6. Then the steady states for the two new variables are:

�W =
1

1� ��W
��hw

�
�W
� �1

=
1

1� 0:999 � 0:60:00189867682 � 0:7129 � 585:5 �
�
1:0330:251:0650:25

�11�1
= 2:511426316;

	W =
 

 � 1
1

1� ��W
� (h)1+�

�
�W
� (1+�)

= 1:1
1

1� 0:999 � 0:6
�
2:584318475� 10�6

�
(528)1+1

�
1:0330:251:0650:25

�11(1+1)
= 3:344030491

Finally, for the steady state of the recursive form of the Phillips equation in the
import sector I assume �N = 0:4. Then the steady states for the two new variables
are:

�N =
1

1� ��N
��e'MpNn(�N)�N�1

=
1

1� 0:999 � 0:40:00189867682 � 1:052357748 � 0:05823481181

� (0:22 � 585:5=0:05823481181) �
�
1:0650:25

�29:21042381�1
= 0:6683583135

	N =
1

1� ��N

�N

�N � 1
��e'MpNn(�N)�N e

pN

=
1

1� 0:999 � 0:51:03544789 � 0:00189867682 � 1:052357748

�0:05823481181 � (0:22 � 585:5=0:05823481181) �
�
1:0650:25

�29:21042381
� (0:05624118063=0:05823481181)

= 0:6789640136:
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Appendix 6

Impulse Response Functions

This Appendix shows the IRFs for the model using the estimated/calibrated pa-
rameters. Because they are many I select the 27 most interesting endogenous
variables. Variables ii, iL, and eC are the nominal interest rate it, the loan in-
terest rate iLt , and the consumption MRER eCt . And variables wbarh, pCc, pNn,
pXx, are simply the multiplication of price times quantity indexes, e.g., wtht. This
makes their responses directly comparable with those of yt.

Response to a consumption demand shock "zCt ;
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Response to a (negative) labor supply "zHt ;
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Response to a domestic �rm loan demand shock "&t ;
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Response to a harvest shock "zAt ;
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Response to a terms of trade shock "p
��

t ;
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Response to a RW in�ation shock "���Nt ;
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Response to a domestic transitory productivity shock "�t;
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Response to a domestic permanent productivity growth shock "�
z

t ;
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Response to a Government expenditure shock "gt ;
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Response to a policy nominal depreciation shock "�t ;

10 20 30
0

0.02

0.04

0.06

0.08
c

10 20 30
­0.05

0

0.05

0.1

0.15
pCc

10 20 30
­0.2

0

0.2

0.4

0.6
y

10 20 30
­0.02

0

0.02

0.04

0.06
pXx

10 20 30
­15

­10

­5

0

5
n

10 20 30
­0.3

­0.2

­0.1

0

0.1
pNn

10 20 30
­1

0

1

2
x 10 ­5 eC

10 20 30
­1

0

1

2

3
x 10 ­3 deltaM

10 20 30
­5

0

5

10

15
tb



118

10 20 30
­5

0

5

10
x 10 ­5 mc

10 20 30
­0.2

0

0.2

0.4

0.6
h

10 20 30
­0.05

0

0.05

0.1

0.15
wbarh

10 20 30
­2

­1

0

1

2
x 10 ­4 ri

10 20 30
­6

­4

­2

0
x 10 ­5 ii

10 20 30
­6

­4

­2

0
x 10 ­5 iL

10 20 30
­5

0

5

10

15
x 10 ­5 pii

10 20 30
­5

0

5

10
x 10 ­4 piN

10 20 30
­5

0

5

10

15
x 10 ­5 piW

10 20 30
­0.02

0

0.02

0.04

0.06
l

10 20 30
­0.05

0

0.05

0.1

0.15
d

10 20 30
­5

0

5

10

15
x 10 ­3 m0

10 20 30
­15

­10

­5

0

5
x 10 ­3 bCB

10 20 30
­60

­40

­20

0

20
rStarCB

10 20 30
­30

­20

­10

0
bStarB

10 20 30
­60

­40

­20

0

20
bStarG



119

Response to a foreign interest rate shock "i�t ;
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Response to a foreign exogenous Bank risk premium shock "�
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Response to a foreign exogenous Government risk premium shock "�
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Point forecasts for observable variables
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